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Abstract

We analyze structure and design of informational substitutes and complements, as pro-

posed by Chen and Waggonner (2016). First, we characterize “universal” complements,

or information structures such that signals are complements for every decision problem,

as precisely variants of the exclusive-or (XOR) of binary signals. This characterization

is important because equilibria in the corresponding prediction market games are al-

ways the “worst-possible” regardless of design. Second, we show that the problem of

designing the market for substitutability is equivalent to solving a linear program, and

that for many common information structures, such a linear program can be solved

in polynomial time. Third, we extend informational substitutes to predicting continu-

ous distributions and distribution properties, such as mean and median, and show that

they sometimes behave unintuitively. In particular, conditionally independent gaussian

signals are complements under a wide range of standard decision problems.
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Chapter 1

Introduction

Agents need to make decisions in an uncertain world. Such decisions are based on pieces

of information that they need to collect and interpret; the more they collect information,

the higher the expected payoff will be. This naturally leads to the notion of value of

information. We want to understand and guide how agents acquire and use information.

Consider the analogous situation of value of items, where agents have a valuation func-

tion over subsets of items. This valuation function is a set function. A set of items are

substitutes if this valuation function is submodular, meaning that the marginal value of

an additional item is decreasing in the subset of items. The more items they have, the

lower value they assign to an additional item. There is a rich body of theories relat-

ing substitutability of items to structural, algorithmic, and game-theoretic properties.

For example, substitutability implies existence of market equilibria, and vice versa for

complementarity (Alexander S. Kelso and Crawford, 1982; Hatfield and Milgrom, 2005;

Ostrovsky, 2008), and bundles of substitute items are “easy” to sell in auctions (Lehmann

et al., 2006). More importantly, these connections are made through submodularity of

the valuation function.

Chen and Waggonner (2016) proposes an analogous definition of substitutability for

information based on submodularity of the value of information function, just like sub-

stitutability of items is based on submodularity of the valuation function of items. The

value of information function is exactly what it sounds like: the value of information

A is the expected reward that an agent will get by using A in making a decision in a

decision problem of interest. This definition of informational substitutes has a crucial

difference from that of substitutes of items: while an agent can have a valuation func-

tion over items independently of context, the value of information to the agent depends

on context, the decision problem for which these pieces of information will be used.

Moreover, each piece of information can have its internal structures and probabilistic
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relationships that do not exist for items. Chen and Waggonner (2016) accounts for this

structure by modeling signals as lattices. In a lattice, information can be partially or-

dered (a piece of information might be more informative than another one, but some

pairs are incomparable) and combined (if an agent knows two pieces of information, that

agent knows a “combined piece” of information). These two properties make lattices

a good model for information. Importantly, the diminishing marginal value definition

of submodularity still holds on lattices, and they reduce to the standard submodular

set function definition when the lattice treats each signal as an “item” without internal

structure. This correspondence between the definition of informational substitutes with

the more established definition of substitutability of items suggests that informational

substitutes is a natural notion in the study of decision making under uncertainty.

Beyond the aforementioned correspondence, Chen and Waggonner (2016) shows that in-

formational substitutes gives “best-possible” information aggregation and informational

complements gives “worst-possible” information aggregation in prediction markets. This

result unifies several previous results on information aggregation in prediction markets

with strategic agents. To fully appreciate the significance of this result, we will first

describe the function and significance of markets in general, and prediction markets in

particular.

The market mechanism is a common way people reveal and aggregate information and

learn from others. If the relevant information is captured in some form of tradable

assets, such as stocks (representing value of a company) or bonds (representing a bor-

rower’s creditworthiness), the market can be implemented by letting agents buy and

sell the corresponding tradable assets. The market prices at a given time can be in-

terpreted as representing the “consensus” valuation, a result of aggregating information

from participating agents.

We can also use the market to aggregate information about the likelihood of future

uncertain outcomes such as the outcome of an upcoming election, or the chance of a

successful product launch. These outcomes are not tradable assets, but the market de-

signer can create synthetic assets or financial contracts whose values depend on uncertain

outcomes of interest. Such markets are called prediction markets. For example, if we

are interested in whether a binary event X will occur, we can create a contract C that

pays 1 if X occurs and 0 otherwise. Then, we can open the market and attract traders

to speculate on the value of the contract. At any given time, the market price of C is

between 0 and 1, and can be interpreted as the probability of X occurring.

Prediction markets have several advantages over alternative methods of aggregating

information, such as polls and expert surveys: they encourage broad participation; they

directly gauge confidence of agents based on their stakes; they align the incentives of
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agents with that of the information aggregator. In fact, prediction markets and “wisdom

of the crowds” are often more accurate than experts (Mollick and Nanda, 2015; Tetlock

and Gardner, 2016).

Despite the success of prediction markets in practice, progress on theoretical analysis

of their information aggregation properties is quite slow. Savage (1971) suggests using

(strictly) proper scoring rules, which (strictly) maximizes the immediate reward under

truthful report. However, proper scoring rules only guarantee good information aggrega-

tion if agents participate only once, or are myopic. A non-myopic trader can conceivably

employ non-truthful strategies to bring market probabilities away from her subjective

probabilities and mislead other traders so she can reap greater profit later when she

brings the probabilities back to her believed values.

This concern is not a mere theoretical curiosity: every seasoned speculator in financial

markets is familiar with the “pump and dump” market manipulation scheme whereby

a trader repeatedly buys a worthless security at a gradually increasing price to create

a perception of activity and value. When enough other investors follow suit and drive

up the price, the trader sells off her position at a profit and the price crashes. In our

framework, the trader is not truthful at the beginning because she buys the asset even

when the price of the asset is higher than her value for it, but she does so to convince

other traders that the asset is valuable and drive up the price for her future profit.

We can see that the problem of analyzing strategic behaviors in prediction markets is

very challenging. It therefore comes as no surprise that previous works (Chen et al.,

2007; Dimitrov and Sami, 2008; Chen et al., 2010; Gao et al., 2013) analyze equilibria

of prediction market games only in very special cases. They tell us, for instance, that

independent signals are “bad” and conditionally independent signals are “good” for

information aggregation. Our notion of informational substitutes unifies all these special

cases into one natural framework. Specifically, we view the prediction market game as

an extensive form game. Signals are substitutes if and only if, in any equilibrium and

for any arrival order of traders, all traders rush to truthfully reveal their information at

their first opportunity: the “all-rush” equilibrium under substitutes is the best-possible.

Signals are complements if and only if, in any equilibrium and for any arrival order of

traders, all traders delay and truthfully reveal their information at their last opportunity:

the “all-delay” equilibrium under complements is the worst-possible.

The natural correspondence via submodular functions and the game-theoretic results

in prediction markets, taken together, suggest that informational substitutes should

play a central role in the study of strategic information revelation and aggregation.

However, informational substitutes is complex, making it hard for practical use. The

value of information function is a complicated mathematical object that depends jointly
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on the information structure and the decision problem. Checking submodularity of this

value of information function, which informational substitutes demands, is even more

complicated. To make informational substitutes an operational definition, we need to

better understand its structure. Moreover, since the market designer has control over the

decision problem (equivalently, the reward function) but not the information structure

(which is a structural property of the situation at hand), we are interested in the design

problem. Given an information structure, can we design a decision problem such that

signals are substitutes? In light of prediction market results of informational substitutes,

we can restate the design question as follows: can we design market scoring rules such

that it is incentive compatible for self-interested forward-looking traders to report their

true beliefs? The study of structure and design of informational substitutes is the focus

of this work.

1.1 Overview and Contribution

We model the information structure with the standard Bayesian model of information

with Aumann partition, following Aumann (1976). At the beginning of the game, each

trader receives a signal. The joint distribution between all signals and the outcome is

common knowledge, but the value of each signal is only known to the trader who receives

it. In other words, every trader knows exactly what type of information other traders

get but not specific values; she knows only the value of her own signal.

Chen and Waggonner (2016) identify a condition called informational substitutes, gen-

eralizing the substitutability condition of Börgers et al. (2013). We already explain

and motivate their definition of informational substitutes in the introduction. We defer

statements of precise definitions and formal model setups to Chapter 2.

The informational substitutes condition takes into account the information structure

and the decision problem jointly. If the information structure is such that signals are

substitutes (complements) for every decision problem, we call that information structure

universal substitutes (complements). Universal substitutes and complements are inter-

esting because they provide the strongest possible guarantee independent of the decision

problem, and because they remove the complex interaction between scoring rules and

information structures. Chen and Waggonner (2016) have shown that universal weak

substitutes must be “almost trivial” and universal moderate and strong substitutes must

be “trivial” in a certain well-defined sense. The main contribution of Chapter 3 is charac-

terizing universal complements. We show that universal weak complements are precisely

variants of an exclusive-or (XOR) of binary signals, and universal moderate and strong

complements must be trivial.
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The characterization of universal complements naturally leads to our next investigation

in Chapter 4, designing for substitutability. Given an information structure, find a

decision problem (equivalently, a scoring rule) such that the signals are substitutes. This

is the content of Section 4.2. Unless our problem falls into a rather small class of universal

complements, we know that such a task is not a priori hopeless. However, there are

many problems that are neither substitutes nor complements, so information structures

that are not universal complements might still not have associated substitutability-

inducing scoring rules. We show that given an information structure, the problem of

deciding existence of a substitutability-inducing scoring rule, and explicitly computing

one if it exists, can be formulated as a linear programming problem. Therefore, it can

always be solved in time polynomial in the number of variables and constraints in the

linear program. We show that important classes of information structures, those with

independent signals or with conditionally independent signals, can be solved efficiently

with this method. We also described geometric requirements of substitutability that

suggest how market designers can find a scoring rule tailored to an information structure

under consideration without explicitly invoking linear programs.

The linear programming approach can handle discrete signals, but not continuous sig-

nals. Fortunately, standard models of continuous signals, such as gaussian distributed

signals, are well-structured and we can combine this with a parametrized class of scoring

rules for substitutability. This is the content of Section 4.3. We also consider substi-

tutability under elicitation of properties of distributions in Section 4.4. The two sections

4.3 and 4.4 also carry a broader message that substitutability of signals sometimes be-

haves quite unintuitively, and complete characterization is likely to be challenging, if not

impossible. For example, conditionally independent gaussian signals can be complements

for a wide range of scoring rules.

Lastly, Chapter 5 recaps the contribution of this work, and discusses possible future

directions.

Chapter 3 and 4 are original to this thesis.

1.2 Related Work

The closest paper to our work is Chen and Waggonner (2016). They propose a definition

of substitutes and complements in information markets via a connection to submodular-

ity of the value of information function. Their definition is analogous to substitutability

for items and is well-motivated. Thus, we adopt their definition in our work. Their work
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builds on Börgers et al. (2013) which proposes a similar but less expressive definition of

informational substitutes.

The main technical tools in this work are inequalities of convex functions, convex op-

timization, and linear programming. The main references are Boyd and Vandenberghe

(2004) and Bertsekas et al. (2003).

The idea that information should be “quickly” aggregated in markets is called “efficient

market hypothesis.” Fama (1970) discusses different versions of this hypothesis. How-

ever, few theoretical works directly address information aggregation. Works in this line

of research are often concerned with market microstructure and asset price dynamics.

Hasbrouck (2007) gives an overview of this literature. Kyle (1985) proposes a model of

financial markets with informed and noise traders. Kyle’s model becomes a benchmark

model, but not much is known about game-theoretic equilibria of this model until Os-

trovsky (2012) shows that information is eventually aggregated under certain natural

conditions. However, it is challenging in their framework to find how fast information is

aggregated. The notion of information substitutes ensures that information is aggregated

as fast as it possibly can.

Our model of the market is based on prediction markets. The notion of cost-based

market maker in prediction markets, which is crucial to our market model, is due to

Hanson (2003). Such models are based on proper scoring rules (Savage, 1971; Gneiting

and Raftery, 2007). There are some previous works regarding equilibria of prediction

market games (Chen et al., 2007; Dimitrov and Sami, 2008; Chen et al., 2010; Gao

et al., 2013). As noted by Chen and Waggonner (2016), these results are subsumed by

our results on informational substitutes.



Chapter 2

Definitions and Background

In this chapter, we formally present definitions and model settings. We also present and

discuss theorems and results that are related to current work. We also discuss classical

results in probability theory and statistics that we use extensively in this work.

2.1 Settings: Information Structures, Decision Problems,

Signal Lattices

We model the information structure with the standard Bayesian model of probabilistic

information. This modeling choice is standard and we largely follow the notations of

Chen and Waggonner (2016).

Definition 2.1 (Information Structure). There is a random event E of interest and

n “base signals” A1, . . . , An modeled as random events. An information structure is a

prior joint distribution of (E,A1, . . . , An). This joint distribution is common knowledge.

We will use p to denote a probability distribution on E, an event of interest, so p(e) refers

to the probability that E = e, and p(e|ai) refers to the probability that E = e conditional

on Ai = ai, which can be computed via Bayesian updating p(e|ai) = p(e, ai)/p(ai). We

will use the following shorthand notation pa to refer to the posterior distribution of e

conditional on A = a, and pa,b to refer to the posterior distribution of e conditional on

A = a and B = b, and so on. We overload the notation and also write E for the set of

outcomes, so we can write, for example, e ∈ E. The notation Ea∼A is the expectation

over a ∈ A, which we sometimes shorten to Ea. A set of signals is denoted L. A

probability distribution on E is equivalent to a simplex on E, and is denoted ∆E ,.

7
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Definition 2.2 (Decision Problem). A decision problem consists of a set of event out-

comes E, a decision space D, and a utility function u : D × E → R where u(d, e) is the

utility for taking action d when the event outcome is E = e.

The agent derives her value from this decision problem in the context of an information

structure. Specifically, an agent has prior p and after observing signal A, she updates

her information on E to the posterior pa and then choose a decision to maximize her

expected utility given this posterior belief. The value of signal A to her is the expectation

over a ∼ A of her expected utility from such a decision.

Definition 2.3 (Value of Information). Given a decision problem with a set of event

outcomes E, a decision space D, and a utility function u : D×E → R, and an information

structure, the prior P over E and the signals, the value of information function is

Vu,P (A) = E
a

[
max
d∈D

E
e
[u(d, e)|A = a]

]

This notation follows Chen and Waggonner (2016). However, this definition has been

proposed earlier in the literature, for example, in Howard (1966); Athey and Levin (2001)

in the context of decision theory.

We now give definitions of signal lattices, which are our models of information. Following

Chen and Waggonner (2016), we consider three types of lattices, the subsets signal

lattice, the discrete signal lattice, and the continuous signal lattice. These three types

correspond to different levels of fineness in the Aumann information partition (Aumann,

1976), with the subsets signal lattice being the coarsest and the continuous signal lattice

the finest.

Definition 2.4 (Lattice). A lattice (U,�) is a set U together with a partial order � on

it such that for all A,B ∈ U , there are a meet A ∧B and a join A ∨B in U satisfying

1. A ∧B � A � A ∨B and A ∧B � B � A ∨B

2. the meet and join are the “highest” and “lowest” (respectively) elements in the

order satisfying these inequalities.

In a lattice, ⊥ denotes the “bottom” element and > the “top” element, i.e. ⊥� A � >
for all A ∈ U .

Definition 2.5 (Subsets Signal Lattice). The subsets signal lattice generated byA1, . . . , An

consists of an element AS for each subset S of {A1, . . . , An}, where AS is the signal con-

veying all realizations {Ai = ai : i ∈ S}. Its partial order is AS � AS′ if an only if

S ⊆ S′. Hence, its meet operation is given by set intersection and join by set union.
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The other two definitions depend on Aumann’s classical model of information partition.

Let Γ ⊆ A1 × · · ·An consists of all signal realizations (a1, . . . , an) in the support of the

prior distribution. A partition is a collection of subsets of Γ such that each γ ∈ Γ is in

exactly one subset. Each signal Ai corresponds to a partition of Γ with one subset for

each outcome ai, namely, the set of realizations γ = (· · · , ai, · · · ).

The partitions of Γ form a lattice and the partial ordering is that A � B if the partition

of A is coarser than that of B, that is, each element of A is partitioned by elements of

B. If A � B, we also say that B is finer than A. The join of two partitions is then the

coarsest common refinement, and the meet, the finest common coarsening.

Note that A � B or that A is coarser than B means that A is “less informative” than

B. This will be true for all three definitions of signal lattices. (In fact, the Aumann

partition is implicit in the definition of subsets signal lattice, where we consider the

partition that treats each signal independently.) The bottom element ⊥ is a null signal,

corresponding to no information beyond the prior, and the top element > corresponds

to the maximum amount of information, observing all signals.

Definition 2.6 (Discrete Signal Lattice). The discrete signal lattice generated byA1, . . . , An

consists of all signals corresponding to partitions of Γ, where Γ is the subset of A1×· · ·An
with positive probability. Its partial order has A � B if the partition of A is coarser

than that of B.

Definition 2.7 (Continuous Signal Lattice). For each partition Π of Γ, let RΠ be drawn

independently from the uniform distribution. Let Γ′ = Γ ×R where R = ×ΠRΠ. The

continuous signal lattice consists of a signal corresponding to each partition of Γ′. Its

partial order has A � B if the partition of A is coarser than that of B.

2.2 Substitutes and Complements

The main goal of this work is to understand the structure and design of substitutes and

complement of information signals. Therefore, the following definition of informational

substitutes and complements (S&C), taken from Chen and Waggonner (2016), is central

to this work.

Definition 2.8. A function f from a lattice to the reals is submodular if it exhibits

diminishing marginal value: for all A′, A,B on the lattice with A ∧B � A′ � A,

f(B ∧A′)− f(A′) ≥ f(B ∧A)− f(A).
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It is supermodular if it exhibits increasing marginal value: for all A′, A,B on the lattice

with A∧B � A′ � A, the above inequality is reversed. The sub- or super-modularity is

strict if, whenever A and B are incomparable on the lattice’s ordering and A′ 6= A, the

inequality is strict.1

Definition 2.9 (Informational S&C, Chen and Waggonner (2016)). In the context of

a decision problem u and prior P , the signals A1, . . . , An are (weak, moderate, strong)

substitutes if the value of information function Vu,P is submodular on the (subsets signal

lattice, discrete signal lattice, continuous signal lattice) respectively. The signals are

strict substitutes if Vu,P is strictly submodular.

The signals A1, . . . , An are (weak, moderate, strong) complements if Vu,P is super-

modular on the (subsets signal lattice, discrete signal lattice, continuous signal lattice)

respectively. The signals are strict substitutes if Vu,P is strictly supermodular.

We note that strong substitutes imply moderate substitutes, which imply weak substi-

tutes.

As we will show in this work, moderate and strong substitutes are very strong notions of

informational substitutes that are unlikely to be satisfied except in mostly trivial cases.

Moreover, weak substitutes are easier to work with. Therefore, in this work, when we

refer to substitutes without qualification, we mean weak substitutes. Similarly, when we

refer to complements without qualification, we mean weak complements.

To demonstrate the intuition of this definition, we consider the case of independent

signals. Independent signals should be complements because knowing the value of one

signal does not give any information about any other signal by virtue of independence.

Knowing more signals should therefore not decrease the marginal value of an additional

signal. In other words, the value of information function is supermodular. This can

be formalized in the following proposition, which is Proposition 5.2.1 from Chen and

Waggonner (2016).

Proposition 2.10 (Chen and Waggonner (2016)). Independent signals are strong com-

plements in any decision problem where G has a jointly convex Bregman divergence

DG(p, q).

1The reader might note that the standard submodularity condition on a lattice is f(x) + f(y) ≥
f(x∨y)+f(x∧y) for every x and y on the lattice. We can convert the standard submodularity condition
to the diminishing marginal return definition as follows. We start with f(x) + f(y) ≥ f(x∨ y) + f(x∧ y)
or f(x) − f(x ∧ y) ≥ f(x ∨ y) − f(y). Comparing this with the marginal value inequality gives x =
B∨A′, y = A, x∧y = A′, x∨y = B∧A, so we insist that by joining and meeting expressions for x and y
we do get the last two. The join is immediate: x∨ y = (B ∨A′)∨A = B ∨ (A′ ∨A) = B ∨A. The meet
gives us the condition we want x ∧ y = (B ∨ A′) ∧ A = (B ∧ A) ∨ (A′ ∧ A) = (B ∧ A) ∨ A′, so if this is
equal A′, then A∧B � A′. The converse can be checked similarly, so the two definitions are equivalent.
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2.3 Scoring Rules and Convex Functions

In this section, we show that every decision problem can be reduced to scoring rules,

which in turn can be reduced to an associated convex function. Therefore, propositions

about decision problems can be rewritten with convex functions. This reduction allows

us to use many tools from the geometry of convex functions to analyze and design “good”

decision problems/scoring rules.

In the following definition (McCarthy, 1956; Savage, 1971; Gneiting and Raftery, 2007),

the forecaster predicts a probability distribution q̂ over events of interest E. Once the

event is realized E = e, the forecaster receives a score (or utility) S(q̂, e). Before event re-

alization, at the time of forecast, the forecaster has some belief over the event, expressed

as a probability distribution q. The forecaster wants to maximize her subjective ex-

pected score, with the expectation taken according to her subjective belief Ee∼q S(q̂, e).

A proper scoring rule is such that q̂ = q is a maximizer of the expected score, and a

strictly proper scoring rule is such that the maximizer is unique. Therefore, (strictly)

proper scoring rules encourage one-stage truthful predictions.

Definition 2.11 (Scoring Rule for Probability Distribution Prediction). A scoring rule

for an event E is a function S : ∆E × E → R so that S(q̂, e) is the score assigned to a

prediction q̂ when the true realized outcome is E = e. We use the standard notation

S(q̂; q) = Ee∼q S(q̂, e). The scoring rule is (strictly) proper if for all E, q, setting q̂ = q

(uniquely) maximizes the expected score S(q̂; q).

We then have the following “revelation principle” reductions from decision problems

to scoring rules and convex functions, respectively. For proofs, see Theorem 2.3.1 and

Corollary 2.3.1 of Chen and Waggonner (2016).

Proposition 2.12 (Chen and Waggonner (2016)). For any decision problem u, there

exists a proper scoring rule S : ∆E × E → R that is equivalent to the original decision

problem in that for all information structures P and signals A, VS,P (A) = Vu,P (A)

Proposition 2.13 (Chen and Waggonner (2016)). For any decision problem u there

exists a corresponding convex function G : ∆E → R, and for every such G there exists

a decision problem u such that G(q) is the expected utility for acting optimally when the

agent’s posterior belief on E is q.

Hence, for instance, V(A) = EaG(pa) where pa is the posterior on E given A = a.

Proposition 2.13 is our main computational tool. For example, we can recast the sub-

stitutes condition in terms of convex functions as follows.
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Definition 2.14. For any decision problem, let G be the associated expected score func-

tion (which is convex). Signals are respectively (weak, moderate, strong) substitutes for

that decision problem if and only if for all A′, A,B on the (subsets, discrete, continuous)

lattice with A ∧B � A′ � A,

E
a′,b

G(pa′b)− E
a′
G(pa′) ≥ E

a,b
G(pa,b)− E

a
G(pa). (2.1)

The above inequality is reversed for complements.

Weak substitutes and complements correspond to set functions being submodular and

supermodular. The following characterization for submodular set functions is more

convenient. Let Ω be a finite set, called a ground set, a submodular function is a set

function f : 2Ω → R, where 2Ω is the power set of Ω, satisfying the following condition.

For every S ⊆ Ω and a, b ∈ Ω\S, we have f(S∪{a})+f(S∪{b}) ≥ f(S∪{a, b})+f(S).

Therefore, we can recast the weak substitutes condition as follows.

Definition 2.15. For any decision problem, let G be the associated expected score

function (which is convex). Signals L = {A1, . . . , An} are weak substitutes for that

decision problem if and only if for all S ⊆ L and A,B ∈ L \ S,

E
S,a
G(pSa) + E

S,b
G(pSb) ≥ E

S,a,b
G(pSab) + E

S
G(pS) (2.2)

The above inequality is reversed for complements.

This definition is especially convenient when there are n = 2 signals, where the condition

reduces to

E
a1
G(pa1) + E

a2
G(pa2) ≥ E

a1,a2
G(pa1a2) +G(p) (2.3)

for substitutes, and the inequality is reversed for complements.

2.4 Scoring Rules for Distribution Properties

A scoring rule for probability distribution prediction is often just called a scoring rule,

and indeed this is what we will mean when we say a scoring rule without qualification.

However, we make this distinction because we are also interested in a scoring rule when

the forecaster provides not the entire distribution over outcomes, but a summary statistic

(such as the mean) over events. This is useful when the aggregator is only interested

in some property, such as mean or median, of the target event distribution, and not

necessarily the entire distribution. This is also useful when the probability distribution
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over outcomes is large and it is unreasonable to expect forecasters to predict or even

communicate the probability of every event, as is often the case when the event is

combinatorial or continuous.

Lambert et al. (2008) first formalizes the above problem as follows. Given an outcome

space Ω and an arbitrary map Γ : ∆Ω → R, under what circumstances can we construct

a proper scoring rule s : R× Ω→ R for Γ, i.e. where,

Γ(P ) ∈ arg min
r∈R

E
e∼P

s[r](e) (2.4)

for every P ∈ ∆Ω?

In our prediction market context, we can ask a corresponding question. The forecaster

now predicts the summary of the distribution of outcome of interest (which can be a

scalar, or a vector of scalars), and not the entire probability distribution. The question

becomes: given an information structure and a distribution statistics (or a property) to

be predicted, can we design a market scoring rule such that signals are substitutes?

Abernethy and Frongillo (2012) characterizes all possible scoring rules for linear prop-

erties, defined as follows.

Definition 2.16. A linear property is given by the map µ 7→
∫

Ω ρdµ for some ρ : Ω→ U .

We call this property a ρ-linear property.

In other words, a linear property is a “weighted average” of all the points, where each

point in the domain has a weight. The expectation of a distribution is a linear property

with ρ an identity function ρ(e) = e.

Definition 2.17. The Bregman divergence of a function f with subderivative df is the

function

Df,df (x, y) = f(x)− f(y)− dfy · (x− y) (2.5)

When f is differentiable, and hence df is unique, we can simply write Df (x, y).

Definition 2.18. Given ρ : Ω → U , we can associate a Bregman score s to the triple

(f, df, ρ) defined by

s[r](e) = −Df,df (ρ(e), r) + f(ρ(e)) = f(r) + dfr · (ρ(e)− r) (2.6)

The main result of Abernethy and Frongillo (2012) is that every “nice” scoring rule that

elicit a ρ-linear property is “equivalent” to some (f, df, ρ) Bregman score, where two

scoring rules are equivalent if they differ by the amount that depends only on realized
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event values and not on the property of the distribution. By “nice” we mean some

technical restrictions, such as the scoring rule being differentiable in some special space,

or that the condition holds only in the relative interior. Such technicalities do not

concern us here.

Proposition 2.19 (Abernethy and Frongillo (2012)). A “nice” proper scoring rule s

elicits a ρ-linear property if and only if it is equivalent to a Bregman score (f, df, ρ) for

some convex f .

This result reduces the problem on scoring rules (in the case of linear properties) to

a problem over convex functions which we are equipped to solve. We can view this

result as analogous to the classical result that reduces the search over scoring rules over

probability distributions to convex functions given by the expected score.

This result is a corollary of Proposition 2.12 for the case of eliciting the expectation.

We cannot find the exact statement of this result anywhere, but the result is not hard.

Later, we will study information structures and scoring rules that are substitutes for

eliciting expectation using this result.

Corollary 2.20. A scoring rule elicits expectation r if and only if the expected score

can be written in the form f(r) where f is a convex function.

Proof. Proposition 2.19 implies that the scoring rule can be written in the form s[r](e) =

f(r) + dfr(ρ(e)− r) = f(r) + dfr(e− r) because the expectation property has ρ(e) = e.

Moreover, since r is the expectation, we must have Ee(e − r) = 0, so Ee s[r](e) = f(r).

Conversely, given a convex f , the scoring rule s[r](e) = f(r) + dfr(e − r) elicits the

expectation r by the converse of Proposition 2.19.

Even though Corollary 2.20 says any convex function of the reported expectation can be

a scoring rule, in practice there is a special scoring rule that is often used, which comes

from minimizing weighted sum of squares. In one dimension, if the reported expectation

is r and the realized outcome is e, the forecaster gets s[r](e) = u(r, e) := −(r − e)2

To have VS,P (A) = Vu,P (A) we have S(q̂, e) = G(q̂) + 〈G′(q̂), δe − q̂〉 with S(q̂, e) =

u(d∗q̂ , e) and d∗q̂ = argmaxd∈D Ee∼q u(d, e). Since the property is just a decision, we

have S(q̂, e) = u(r∗q̂ , e) and r∗q̂ = argmaxr Ee∼q u(r, e). Also note that G(q) = S(q; q) =

Ee∼q S(q; e). It must be true that G(q) is convex in q – and remember that q is a

distribution not a number.

We can compute G(q) when we want to elicit mean u(r, e) = −(r−e)2. We have r∗q = E q
so S(q, e) = u(E q, e) and G(q) = S(q; q) = Ee∼q S(q, e) = Ee∼q −(E q − e)2 = −Var(q)
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So G is the negative variance of the distribution, an elegant result.

We call this mean-eliciting scoring rule canonical. Note that this canonical scoring rule

we just derived is a special case of Corollary 2.20 when f(r) = r2, because the scoring

rule then is s[r](e) = f(r) + f ′(r)(e − r) = r2 + 2r(e − r) = e2 − (r − e)2, which is

equivalent to the negative square because it differs from −(r − e)2 by e2, independent

of r.

More generally, we can write s[r](e) = f(r) + dfr(e − r) = −Df (e, r) + f(e), which is

equivalent to s[r](e) = −Df (e, r). If a proper scoring rule elicits the mean, r = E q,
where q is the belief of the forecaster, so the expected score function is then G(q) =

−Ee∼qDf (E q, e).

A classical result tells us that the expected score function G must be convex. We can

directly verify that a canonical score function is indeed convex as follows.

G

(
q1 + q2

2

)
− G(q1) +G(q2)

2
= −Var

(
q1 + q2

2

)
+

Var(q1) + Var(q2)

2
= Var

(
q1 − q2

2

)
≥ 0

We summarize our discussion in the following definition.

Definition 2.21. A scoring rule that elicits expectation is canonical if the expected score

is −Var(q), where q is the belief of the forecaster. This is equivalent to the expected

score of (E q)2 = f(E q), where f(r) = r2 in the spirit of Corollary 2.20.

A canonical scoring rule also has the nice property that the Bregman divergence of two

beliefs is canonical. To the best of our knowledge, this result is new. However, there is

a well-known analogue: if G(q) = ||q||22, then DG(p, q) = ||p− q||22.

Proposition 2.22. If G(q) = −Var(q) then DG(p, q) = −Var(p− q).

Proof. Prove the statement on discrete distributions and pass to the limit. The rest is

calculation. The details are relegated to Appendix A.1.1.

In particular, Proposition 2.22 implies that with the canonical mean-eliciting scoring

rule, the Bregman divergence DG(p, q) is jointly convex in p and q. Proposition 2.10

then implies that independent signals are strong complements.

Corollary 2.23. Independent signals are strong complements under a canonical mean-

eliciting scoring rule.

Abernethy and Frongillo (2012) only handles linear properties, but there are other prop-

erties of distributions that we are interested in, such as the median. Note that the
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median only makes sense if the target distribution is one-dimensional. As is standard

in statistics, the mean is elicited by the scoring rule s[r](e) = −(r − e)2, which gives

rise to the canonical mean-eliciting scoring rule. An analogue for median elicitation

is s[r](e) = −|r − e|, and we also call this scoring rule canonical among the median-

eliciting scoring rules. A median-eliciting canonical scoring rule as the expected score

on q = N (µ, σ2) as G(q) = Ee∼N (µ,σ2)−|µ− e| = −cσ for constant c =
√

2/π > 0. We

summarize our discussion in the following definition.

Definition 2.24. A scoring rule that elicits the median is canonical if the scoring rule is

s[r](e) = −|r−e|. If q = N (µ, σ2), then the expected score is −cσ, where c =
√

2/π > 0.



Chapter 3

Universal Substitutes and

Complements

The informational substitutes condition takes into account the information structure

and the scoring rule jointly. If the information structure is such that signals are substi-

tutes (complements) for every scoring rule, we call that information structure universal

substitutes (complements). In this chapter, we characterize universal substitutes and

complements.

Universal substitutes and complements are especially of interest because independence of

signal substitutability from market settings removes much of the complexity incurred in

thinking about substitutability of pieces of information compared to substitutability of

items of goods; whether items are substitutes for an agent depends only on her valuation

function over items and not on which market she is in. Universal substitutes also provide

a very strong guarantee that the market can function as intended when the market

designer has no control over the choice of scoring rule, or is interested in the robustness

of such a choice. Unfortunately, Chen and Waggonner (2016) has shown that all universal

substitutes are, in a precisely defined sense, “almost trivial.” One interpretation of this

result is as follows: in information markets, the information structure and scoring rules

cannot be decoupled and must necessarily be considered jointly.

We are also interested in the opposite problem, that of universal complements. Char-

acterizing universal complements is the main contribution of this chapter. Identifying

universal complements is useful as an exercise in impossibility results. If we know that

an information structure we are dealing with is in a class of universal complements, we

know that information aggregation is worst-possible regardless of design. Under uni-

versal complements, market designers need not try to find a substitutability-inducing

scoring rule because it does not exist. We show that if signals and the outcome are

17
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binary such that the outcome is the exclusive or (XOR) of signals, then the signals are

universal complements. We also show that, for a binary outcome, if binary signals are

universal complements, then the outcome must be the XOR of signals. Moreover, we

show that for multi-valued signals to be universal complements “generically,” they must

collapse into binary signals. Thus, we characterize the class of universal complements.

We argue that universal moderate (and strong) substitutes and complements are too

strong in the sense that only trivial information structures satisfy them. We prove this

fact in the last section, Section 3.4. Henceforth, when we refer to universal substitutes

or complements, we mean the weak notion. Section 3.1 develops technical machineries

on linear convex function inequalities that we will use throughout this chapter. Section

3.2 discusses the universal substitutes result of Chen and Waggonner (2016). Section 3.3

characterizes universal complements, starting from the simpler case when the outcome

is a deterministic function of signals (Subsection 3.3.1), then extending it to the general

case (Subsection 3.3.2).

Definition 3.1 (Universal Substitutes and Complements). Given an information struc-

ture E,A1, . . . , An with prior P , the signals A1, . . . , An are universal weak substitutes if

they are weak substitutes for every decision problem. To make the dependence on E ex-

plicit, we sometimes say that (A1, . . . , An;E) are universal weak substitutes. Universal

(weak/moderate/strong) (substitutes/complements) are defined analogously.

Note that the universal substitutes property is a property of the information structure

alone, that is, it is a property of the joint prior distribution (A1, . . . , An;E).

We have already seen that any decision problem can be reduced to a convex function G

and the inequalities that determine the substitutes and complements are linear in the

function G. The universal substitutes and complements condition means the inequality

holds for every convex function G. We will work with such inequalities extensively in

this section, so before we proceed, we will develop some results on how to deal with

them.

3.1 Linear Convex Function Inequalities

We first show that G can be scaled by a positive factor and by a linear combination of

its coordinate inputs. This will allow us to normalize the values of G at the corners of

the domain to 0, which aid computation.

Let E takes d values, then the function G(q) has as its argument q a distribution over d

values, that is, q is in a (d− 1)-simplex ∆d−1 = {(q1, . . . , qd) ∈ Rd≥0 : q1 + · · ·+ qd = 1}.
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For i = 1, . . . , d, let ei ∈ ∆d−1 be such that the ith coordinate is 1, and the rest are 0. In

the following proposition, we show that we can scale G such that we can set G(ei) = 0

for i = 1, . . . , d without loss of generality.

Proposition 3.2. Let λ > 0 and α ∈ Rd be constants. Let G, G̃ : ∆d−1 → R, be

such that G̃(q) = λG(q) + 〈q, α〉 for every q ∈ ∆d−1, where 〈·, ·〉 is a dot product, i.e.,

〈q, α〉 =
∑d

i=1 qiαi. then G induces substitutability if and only if G̃ does. This implies

that we can set G(ei) = 0 for i = 1, . . . , d without loss of generality.

Proof. G induces substitutability if and only if for A ∧B � A′ � A,

E
a′,b

G(pa′,b)− E
a′
G(pa′) ≥ E

a,b
G(pa,b)− E

a
G(pa)

and same for G̃. We show that Ea,b pa,b = p. This is true because for each outcome

e,
∑

a,b p(a, b)p(e|a, b) =
∑

a,b p(e, a, b) = p(e). Similarly, we can show that Ea,b pa,b =

Ea′,b pa′,b = Ea pa = Ea′ pa′ = p. Therefore,

E
a′,b

G̃(pa′,b)− E
a′
G̃(pa′) = λ

(
E
a′,b

G(pa′,b − E
a′
G(pa′)

)
+ 〈 E

a′,b
pa′,b, α〉 − 〈E

a′
pa′ , α〉

= λ

(
E
a′,b

G(pa′,b)− E
a′
G(pa′)

)
Similarly,

E
a,b
G̃(pa,b)− E

a
G̃(pa) = λ

(
E
a,b
G(pa,b)− E

a
G(pa)

)

Since λ > 0, substitutability for G is equivalent to substitutability for G̃.

Now, let G satisfies substitutability and for i = 1, . . . , d, let αi = −G(ei). If G̃(q) =

G(q) + 〈α, q〉, then we just proved that G̃ must also satisfy substitutability and G̃(ei) =

G(ei)+ 〈α, ei〉 = G(ei)+αi = 0. Therefore, it is not without loss of generality to assume

that G(ei) = 0 for i = 1, . . . , d.

The following result is classical.

Proposition 3.3. If S ⊆ Rd is an open set, and G : S → R is convex, then G is

continuous on S.

Often we will be working with a convex G on a domain that is a (d−1)-simplex ∆d−1 :=

{(x1, . . . , xd) : xi ≥ 0, x1 + · · ·+xd = 1}. G can only be discontinuous at the boundaries,
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but such functions are pathological and we want to rule them out. Therefore, from this

point on we assume that G is continuous in the entire domain.

When the domain of G is 1-simplex, we can restrict it without loss of generality to a

function of the first coordinate which is in [0, 1]. In other words, for x ∈ [0, 1], we write

G(x, 1− x) as G(x), and G is still convex in x.

We often have to deal with inequalities of the form

n∑
i=1

αiG(xi) ≥ 0

where α1, . . . , αn, x1, . . . , xn are known, and we want to know whether the above in-

equality holds for every convex function G. Since every constant function is convex,

using the constant function 1 and −1 tells us that
∑n

i=1 αi = 0 is a necessary condition.

This condition is satisfied in our application in universal substitutes and complements.

Proposition 3.4. Given α1, . . . , αn, x1, . . . , xn ∈ R such that
∑n

i=1 αi = 0 and 0 ≤
x1, . . . , xn ≤ 1. We can check in time linear in n whether the inequality

n∑
i=1

αiG(xi) ≥ 0 (3.1)

holds for every convex G such using Algorithm 1.

Proof. We can set G(0) = G(1) = 0 by Proposition 3.2.

Let x0 = 0, xn+1 = 1, and yi = G(xi) for 0 ≤ i ≤ n + 1; in particular, y0 = G(0) =

0, yn+1 = G(1) = 0.

We will show by induction on i that the inequality holds for every convex G if it holds

for a special G that is linear from x0 = 0 to xi and piecewise linear on [xj , xj+1], j ≥ i,
following the transformations in Algorithm 1.

We first note that it is sufficient to consider a G that is piecewise linear on [xj , xj+1]

for every j, because only the values of G are present in the inequality in question.

The base case i = 1 is evident because G is linear on [x0, x1]. Now, assume that G

is linear on [x0, xi]. We will show that yi can take any value within the upper and

lower bound derived later. Given (x0, y0), (xi+1, yi+1), (xi+2, yi+2), . . . , (xn+1, yn+1), the

necessary and sufficient conditions for yi such that G is convex are

yi
xi
≤ yi+1 − xi+1

xi+1 − xi
and

yi+1 − yi
xi+1 − xi

≤ yi+2 − yi+1

xi+2 − xi+1
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which is equivalent to(
xi+2 − xi
xi+2 − xi+1

)
yi+1 −

(
xi+1 − xi
xi+2 − xi+1

)
yi+2 ≤

(
xi
xi+1

)
yi+1

If αi ≥ 0, then the expression
∑

j≥i αjyj (the sum is over j ≥ i because the inductive

assumption that G is linear on [x0, xi] means that any yj , j ≤ i, can be written as a

linear combination of y0 and yi and cleared away) is lower bounded by the lower bound

of yi, so we can replace the yi with the lower bound expression. If this replacement

makes the inequality holds, the fact that it is a lower bound means that the inequality

always holds. Conversely, this lower bound can be achieved so the inequality must hold

at the lower bound. Replacing yi with the lower bound means adding xi+2−xi
xi+2−xi+1

to the

coefficient αi+1 of xi+1 and subtracting xi+1−xi
xi+2−xi+1

from the coefficient αi+2 of xi+2.

If i = n − 1, then xi+2 = 0, not a variable, so the coefficient change has no effect.

This corresponds to the update within the αi > 0 loop in Algorithm 1. If αi < 0, then

analogously we can replace yi with the upper bound, which corresponds to adding xi
xi+1

to the coefficient αi+1 of xi+1. This also corresponds to the update within the αi < 0

loop in the algorithm.

Once we exhaust all of i = 1, . . . , n − 1, we reduce the inequality to αnyn ≤ 0, where

yn can take any non-positive value. This inequality holds if and only if αn ≤ 0. This

corresponds to the last part of the algorithm.

Proposition 3.5. Given α1, . . . , αr, β1, . . . , βs ≥ 0 and 0 = x0 < x1 < · · · < xr <

xr+1 = 1 and 0 ≤ x′1, . . . , x′s ≤ 1. The inequality

r∑
i=1

αiG(xi) ≥
s∑
j=1

βjG(x′j) (3.2)

holds for every convex G if and only if it holds for a special G that is piecewise linear

on each of the intervals [xi, xi+1], i = 0, . . . , r.

Proof. A line segment connecting two points on the graph of a convex function lies

weakly above the graph of the function between that two points.

Proposition 3.5 implies that we can replace each of the G(x′j) with a linear interpolation

between G(xij ) and G(xij+1) for x′j ∈ [xij , xij+1] to reduce the inequality to the ones

that only have the terms G(xi). We can then appeal to Algorithm 1 to finish the check.

If all the coefficients and function arguments are given, this does not save computation

time. The computation time is still O(r+ s). However, it is a very powerful conceptual
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Algorithm 1 Checking whether a linear inequality 3.1 holds for every convex G.

Precondition:
∑n

i=1 αi = 0 and 0 = x0 < x1 < · · · < xn < xn+1 = 1

1: function LinearConvexIneq(α1, . . . , αn, x1, . . . , xn)
2: for i← 1 to n− 1 do
3: if αi > 0 then
4: αi+1 ← αi+1 + xi+2−xi

xi+2−xi+1
αi

5: if i < n− 1 then
6: αi+2 ← αi+2 − xi+1−xi

xi+2−xi+1
αi

7: end if
8: end if
9: if αi < 0 then

10: αi+1 ← αi+1 + xi
xi+1

αi
11: end if
12: αi ← 0
13: end for
14: if αn ≤ 0 then
15: return true
16: else
17: return false
18: end if
19: end function

tool when we want to prove that a family of information structures satisfy universal

substitutes or complements.

Proposition 3.5 has the following very useful corollary.

Corollary 3.6. If α1, . . . , αn ≥ 0 and 0 ≤ x, x1, x2, . . . , xk ≤ 1, the inequality

G(x) ≥
k∑
i=1

αiG(xi) (3.3)

holds for every convex G if and only if

∑
i:xi≤x

αi
xi
x

+
∑
i:xi≥x

αi
1− xi
1− x

≥ 1 (3.4)

3.2 Universal Substitutes

Chen and Waggonner (2016) essentially already solved the universal substitutes problem

in Section 5 of their paper.

Definition 3.7. Given an information structure E,A1, . . . , An with prior P , the sig-

nals are trivial substitutes if for every realization a1, . . . , an of A1, . . . , An in the prior’s

support, pai = pa1,...,an for all i. The signals are trivial complements if every realization
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a1, . . . , an of A1, . . . , An in the prior’s support, p{aj :j 6=i} = p for all i. We term them

somewhat trivial if the prior is a mixture distribution that is equal to a trivial struc-

ture with some probability, and some other arbitrary other structure with the remaining

probability.

The following proposition is Proposition 5.1.1 of Chen and Waggonner (2016).

Proposition 3.8 (Chen and Waggonner (2016)). If (A1, . . . , An;E) are universal weak

substitutes, then they are somewhat trivial. Furthermore, their “trivial” component is

more informative than the nontrivial component, in the following sense. Let Xi ⊆ ∆E

be the convex hull of {pai : ai ∈ Ai}, and let Y ⊆ ∆E be the convex hull of {pa1,...,an :

a1 ∈ A1, . . . , an ∈ An}. If (A1, . . . , An;E) are universal substitutes, then Xi = Y for all

i.

3.3 Universal Complements

We characterize universal complements in this section. An inspection of the inequali-

ties that determine complements (Definition 2.15) shows that the key variables are the

posterior probabilities of the outcome E conditional on subsets of signals. Therefore,

the math is simpler in the case where the outcome E is a deterministic function of sig-

nals A1, . . . , An; in other words, signals completely determine the outcome. This is an

important special case not only because it is mathematically simple, but also because

it represents an ideal case where someone who knows all the signals can predict the

outcome with certainty.

We will study this setup in Subsection 3.3.1. We will obtain a clean characterization of

universal complements when signals determine the outcome: all signals must “collapse”

into binary signals, and the outcome is an exclusive-or (XOR) of a subset of signals. We

then extend this characterization to general information structures in Subsection 3.3.2.

To rule out degenerate cases, we assume that every signal is nontrivial. Note that this

is slightly weaker than the distinguishability criterion common in previous works (Chen

et al., 2010; Ostrovsky, 2012; Gao et al., 2013; Chen and Waggonner, 2016).

Definition 3.9. Given an information structure (A1, . . . , An;E) with prior P , a signal

Ai is nontrivial if Ai takes at least two values, and for any two different realizations ai

and a′i of Ai, there exists a realization a−i of A−i = {A1, . . . , Ai−1, Ai+1, . . . , An} such

that the two posterior distributions E|Ai = ai, A−i = a−i and E|Ai = a′i, A−i = a−i are

different.
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We will assume in this section that all signals are nontrivial. This is without loss of

generality because if two realizations ai and a′i of Ai give the same posterior distribution

of the outcome every any realization a−i of A−i, then for the purpose of predicting

outcome, agent i can treat ai and a′i as the same signal. If the signal Ai takes only one

value, then the value of this signal is not informative about the outcome, so the signal

is trivial and agent i only knows the common prior.

3.3.1 When Signals Completely Determine The Outcome

The main theorem in this section is the following characterization of universal comple-

ments as XOR of boolean signals.

Theorem 3.10. If (A1, . . . , An;E) are universal complements, all signals are nontrivial

and binary, and all prior probabilities are positive, then either E = A1⊕A2⊕· · ·⊕An or

E = ¬(A1⊕A2⊕· · ·⊕An). If we assume that (A1, . . . , An;E) are universal complements

for every set of positive prior probabilities, then nontrivial signals must be binary, so the

binary signals assumption can be dropped.

Proof. We give a proof sketch here. See Appendix A.2.1 for the full proof.

The key technical tools of the proof are linear convex function inequalities that we

develop in Section 3.1.

The core of this result is when n = 2 and E is binary. In such a case, the substitutability

condition in Definition 2.15 has only one inequality which is linear in G(·) at various

conditional probabilities that can be computed. For each (A1, A2) ∈ {0, 1} × {0, 1},
there are two possible values of E, as E is a function of A1 and A2. Each function gives

rise to a different inequality. Then, Corollary 3.6 allows us to convert this inequality

that holds for every convex G to an inequality in scalars, which can be readily checked

case by case. By exploiting the symmetry of the problem, there are only very few cases

to consider. Only the XOR passes the test.

We can use the n = 2 result to extend to E binary and general n by induction on n,

considering the n − 1 signals as a block that has to be XOR by inductive hypothesis.

By n = 2 result, that block also has to XOR with the nth signal.

Now we relax the binary signals assumption but assume that signals are complements

for every set of positive prior probabilities. By setting prior probabilities of all but two

signals to near zero carefully, we can invoke continuity to derive a contradiction or reduce

back to the case that E is binary. To show that each signal has to be binary, assume

that one signal A1 takes at least 3 values. Fixing all signals but A1 and A2 and consider
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the value of E for each value of (A1, A2) ∈ {0, 1, 2} × {0, 1}. Case analysis reveals a

contradiction.

The assumption that all prior probabilities are positive is essential. Let n = 2, A1, A2 are

binary with P(A1 = a1, A2 = a2) = πa1a2 for a1, a2 ∈ {0, 1}. If π00 = 0 then the signals

under E = 1[A1 = 1, A2 = 1] = A1 ∧ A2 are in fact universal substitutes. This can be

proved by bounding the right side with the help of Corollary 3.6 to get the coefficient

≥ (π10 + π11)
1− π11

π10+π11

1− π11
+ (π01 + π11)

1− π11
π01+π11

1− π11
=

π10

1− π11
+

π01

1− π11
= 1

and inequality (3.4) is satisfied. Similarly, if π01 = 0, then E = 1[A1 = 1, A2 = 0] is

a universal complement, and so on. Case analysis shows that these are the only other

possibilities apart from the XOR. These approaches can be extended to general n as well,

depending on which prior probabilities are zero, by carefully conditioning on subsets of

signals just like the proof.

The theorem immediately implies the following corollary by letting S be a subset of

nontrivial signals.

Corollary 3.11. If (A1, . . . , An;E) are universal complements, all signals are binary,

and all prior probabilities are positive, then there exists S ⊆ {1, 2, . . . , n} such that E =

⊕i∈SAi or E = ¬⊕i∈SAi. If we assume that (A1, . . . , An;E) are universal complements

for every set of positive prior probabilities, then nontrivial signals must be binary, so the

binary signals assumption can be dropped.

3.3.2 When Signals Do Not Completely Determine The Outcome

In Subsection 3.3.1 we show that in universal complements, if the outcome is a deter-

ministic function of signals, then signals must be binary and the outcome must be the

XOR of signals. We now show that if the randomization in the outcome E is arbitrary,

then the outcome must either be the XOR of all signals or its negation.

Theorem 3.12. Let A = (A1, . . . , An) be nontrivial signals. Let f1(A), . . . , fk(A) be

deterministic functions of the signals, and the outcome E conditional on A is defined

by E = fi(A) with probability αi > 0, for 1 ≤ i ≤ k, where α = (α1, . . . , αk) is such

that
∑k

i=1 αi = 1. Then, (A;E) are universal complements for every α if and only if

all signals and the outcome are binary and either k = 1 or 2. Moreover, if we denote

A1 ⊕ · · · ⊕ An by ⊕A, then fi must be of the following form. If k = 1, then E = f1(A)

is ⊕A or ¬(⊕A). If k = 2, then {f1(A), f2(A)} = {⊕A,¬(⊕A)}.
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Proof. For each i, consider the α such that αj → 0 for j 6= i, and αi → 1, then

by continuity of G, (A; fi(A)) are universal complements. By Theorem 3.10, fi(A) ∈
{⊕A,¬(⊕A)}. Since this holds for every i, and the fi are distinct, k must be 1 or 2,

and fi must be of the described form. If k = 1, then Theorem 3.10 implies the converse

for k = 1 that ⊕A and ¬(⊕A) are universal complements. Now we need to show the

converse for k = 2 that if E|A is ⊕A with probability α and ¬(⊕A) with probability

1 − α, then (A;E) are universal complements. It suffices to check the case n = 2. The

general n follows by induction analogously to the last part of Theorem 3.10.

By symmetry, assume 0 ≤ α ≤ 1
2 . The inequality to be proved is

G ((π01 + π10)(1− α) + (π00 + π11)α) + (π00 + π11)G(α) + (π01 + π10)G(1− α)

≥ (π00 + π01)G

(
π01(1− α) + π00α

π00 + π01

)
+ (π10 + π11)G

(
π10(1− α) + π11α

π10 + π11

)
+ (π00 + π10)G

(
π10(1− α) + π00α

π00 + π10

)
+ (π01 + π11)G

(
π01(1− α) + π11α

π01 + π11

)

Let G̃(x) = G((1− α)x+ α(1− x)) which is convex since 1− 2α ≥ 0. The inequality to

be proved is equivalent to

G̃(π01 + π10) + (π00 + π11)G̃(0) + (π01 + π10)G̃(1)

≥ (π00 + π01)G̃

(
π01

π00 + π01

)
+ (π10 + π11)G̃

(
π10

π10 + π11

)
+ (π00 + π10)G̃

(
π10

π00 + π10

)
+ (π01 + π11)G̃

(
π01

π01 + π11

)
This is the exact same inequality that we proved for deterministic XOR in Theorem 3.10

and we are done.

3.4 Universal Moderate Complements Are Trivial

Throughout this work we deal almost exclusively with weak substitutes and comple-

ments. In the introduction, we argue that the moderate and strong notions of substitutes

and complements are too strong to be satisfied except in the trivial cases.

Chen and Waggonner (2016) concludes that all universal moderate substitutes are trivial

in their Theorem 5.1.1.

Proposition 3.13 (Chen and Waggonner (2016)). All universal moderate substitutes

are trivial. (Hence, the same holds for universal strong substitutes.)
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We also claim that all universal moderate complements are also trivial. Hence, the same

holds for universal strong complements. The key is that under moderate complements,

the inequalities have to be satisfied for any admissible information partition, and the set

of all admissible partitions is too rich for one information structure to satisfy them all.

Theorem 3.14. If the signals A1, . . . , An are signals that each take a finite number of

possible values and E = f(A1, . . . , An) is a deterministic function of A1, . . . , An, then if

(A1, . . . , An;E) are universal moderate complements, then f is a constant function.

Proof. We give a proof sketch here. See Appendix A.2.2 for the full proof.

We first prove the case n = 2 and f is boolean. Each function f corresponds to one of

the 16 possible values of (a00, a01, a10, a11). For notational convenience list the value of

E when (A1, A2) = (0, 0), (0, 1), (1, 0), (1, 1) consecutively; for example, 0001 represents

the information structure where E = 1 if A1 = A2 = 1 and 0 otherwise. Write πa1a2 the

prior probability that (A1, A2) = (a1, a2) and aa1a2 := f(A1 = a1, A2 = a2).

Consider the following partition

A′ = {{(0, 0), (0, 1), (1, 0), (1, 1)}}

A = {{(0, 0)}, {(0, 1), (1, 0), (1, 1)}}

B = {{(0, 1)}, {(0, 0), (1, 0), (1, 1)}}

We can show that 0100, 0101, 0110, 0111 are not permissible by choosing an appropriate

counterexample G that violates the inequality. We will assume throughout that G(0) =

G(1) = 0. For each of 0100 and 0111, the inequality is Jensen’s inequality with the

wrong sign, so it is false. For 0101 and 0110, there are two Gs on both the left and the

right. We can find a contradiction by first selecting a G such that the two Gs on the left

are equal. The left side reduces to one G, so we can apply Corollary 3.6 to reduce it to

an inequality of scalars, which can be checked to be false. A more methodical approach,

which requires more case analysis, is to apply Algorithm 1 directly to reduce a linear

inequality of Gs to an inequality of scalars.

By symmetry, we can rule out all other f ’s except 0000 and 0001, or their symmetric

equivalents. 0001 can also be ruled out by another information structure, so only 0000,

which corresponds to a constant function, remains.

Extending the case n = 2 to general n, f boolean, is straightforward. Assume that it is

true up to n − 1, then a function f(A1, . . . , An) of n variables must be constant when
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you fix the An, so f(A1, . . . , An) depends only on An, but similarly it depends only on

An−1 so it depends on neither, that is, a constant function.

Now we extend this to E = f(A1, . . . , An) a general function. E takes a finite number of

values because there are finitely many possible inputs A1, . . . , An. If E takes 2k values,

then we can write E = (E1, . . . , Ek). We must have Ej = fj(A1, . . . , An) a deterministic

function of Ai, and (A1, . . . , An;Ej) are universal complements, so Ej is a constant for

all j, so E is a constant.

We can further extend this result to signals Ai that take multiple finite number of values.

We can replace any Ai with Ai1, . . . , Aiti with Aij binary, say, map any possible value

of Ai into binary numbers from 0 up to a finite number less than 2ti , then Aij is the jth

digit of the binary representation of Ai. We are done.



Chapter 4

Designing to Create

Substitutability

In this chapter, we are the market designer. The information structure is intrinsic to the

market; the market designer has no control over the information structure. However,

the market designer has control over the decision problem, or equivalently, the scoring

rule or the associated convex function G that is the expected score. (See Chapter 2 for

an extended discussion of this point.) We want to decide whether a convex G exists

such that the signals are substitutes. If such a convex G exists, we want to be able to

design one efficiently. The market mechanics of predicting probability distributions and

predicting properties are different, so we will consider the two setups separately in this

chapter.

The main technical tool to design such a G is linear programming. We first observe that

the set of inequalities that determine substitutability from Definition 2.15

E
S,a
G(pSa) + E

S,b
G(pSb) ≥ E

S,a,b
G(pSab) + E

S
G(pS) (4.1)

for S ⊆ {A1, . . . , An} ≡ L and A,B ∈ L \ S, are all linear when we view each function

G(·) as a variable. The arguments of G that are present in the above set of inequalities

are precisely all possible posterior distributions of the outcome conditional on a subset

of signals. Therefore, the only values of G that matter in our application are the values

at all posterior distributions of outcomes, and conversely, if we can specify the values of

G at each posterior distribution that satisfy the set of inequalities while maintaining the

convexity of G, then we have successfully found the desired G. We need to enforce the

condition that G is convex. We also need to enforce that G is nontrivial; a constant G

trivially satisfies the inequality but is uninteresting. (If the trader gets the exact same

score independent of the report, while it is weakly optimal to report the true belief, it

29



30

is also optimal to report any belief whatsoever.) It turns out that both convexity and

nontriviality conditions are also linear. We can, therefore, view each G(·) as a variable

in the linear program, and solve the linear program. The solution of the linear program

gives the value of G at desired points, and we can take those values as our G, or if the

linear program has no solution, then we can conclude that no such G exists, since the

two problems are equivalent.

There exist efficient algorithms that solve linear programs in polynomial time in the size

of the input (Khachiyan, 1980; Karmarkar, 1984). The catch is that there might be an

exponential number of posterior distribution values, i.e. the arguments to G, and thus

an exponential number of variables.

Before we proceed, we need to make sure that the information structure under consid-

eration has a compact representation, that is, it can be described in polynomial time.

This is important because if we cannot even write down the information structure in

polynomial time, then we can not give the information structure as a batch input to

the algorithm in polynomial time; the input is too unwieldy for any practical applica-

tion.1 This constraint means we need to add structure or symmetry into the information

structure in question. For example, n binary signals without any restriction can collec-

tively have 2n possible values, each with its own prior probability specified as a number,

so 2n numbers need to be written down, which is unfeasible. However, if we assume

additional structure, such as “each signal is independently drawn from a specified distri-

bution” then we have a compact representation. Some such information structures are

standard in applications in computer science and economics; we enumerate and explain

them in Section 4.1.

In Section 4.2, we then explain in detail how to set up a linear program to find an

appropriate convex G that makes the signals substitutes, or show that such a G does

not exist. The main idea is that all inequalities required for substitutability (Definition

2.15) are linear in G(·), evaluated at various posterior (conditional) probabilities that

can be calculated. Additional assumptions on convexity and nontriviality of G are also

linear in G(·). Therefore, given a full access to any information structure, there is an

algorithm that produces a substitutability-inducing convex G or a certificate of non-

existence of such G. The computational cost of the algorithm is polynomial in the

size of the linear program. If there are polynomially many constraints, and G(·) is

evaluated at polynomially many points, the problem of finding a G is equivalent to a

polynomially sized linear program which can be solved in polynomial time. We then

show that information structures presented in Section 4.1 fit into this regime. Lastly,

we briefly consider the problem of designing interpretable G functions.

1We discuss other possible models for information structure query in Subsection 5.1.1.



31

In Section 4.3, we turn to the case where the outcome and signals have continuous

probability distributions. Unlike discrete distributions considered in Section 4.2, traders

can no longer report the density of their beliefs at every point because there are in-

finitely many such points. However, if traders’ beliefs follow a known distribution (say,

a gaussian), they can just report parameters of the distribution (mean and variance in

the gaussian case). We focus in particular on gaussian (normal) distributions for three

reasons. First, they are commonly used in modeling noisy signals. Second, posterior

distributions of gaussians, which we need to check substitutability, are tractable. Third,

the notion of signal correlation is most natural in the multivariate gaussian setting. We

also focus on a particular parametrized class of scoring rules. This class covers most of

the scoring rules used in practice.

Even within this class of scoring rules and gaussian signals, we show that substitutabil-

ity of signals is quite unintuitive. Chen and Waggonner (2016) shows that conditionally

independent signals are substitutes if the Bregman divergence of the expected score

function G is jointly convex. This result also has an intuitive appeal; conditionally inde-

pendent signals “should” be substitutes because each signal can be thought of as a noisy

measurement of the true value, so knowing one signal should make the marginal sig-

nal less valuable. However, we show in Subsection 4.3.1 that conditionally independent

gaussian signals are complements for a wide range of parameters in the scoring rule.

Next, in subsection 4.3.2, we analyze the effect of correlation of gaussian signals on

substitutability. We show that there is a sharp threshold that the signals are substitutes

if the correlation is above the threshold, and complements otherwise. This is intuitive;

lower correlation makes the signals closer to independent, and higher correlation makes

the signals closer to conditionally independent. We can therefore think of this result as

a continuous interpolation between the two regimes. Lastly, as an aside, in subsection

4.3.3, we show how to derive new matrix inequalities from the current setup.

In Section 4.4, we consider the problem of predicting a property of the target distri-

bution, such as mean or median, rather than the entire distribution. We single out

commonly used scoring rules for eliciting mean and median and call them canonical.

We then show that conditionally independent gaussian signals are substitutes, while

independent gaussian signals are complements, under the canonical mean-eliciting and

median-eliciting scoring rules. The reasons for focusing on gaussian signals are simi-

lar to those provided in Section 4.3. We show that the gaussian assumption is robust

to other bell-shaped distributions; by numerical simulations, the same substitutability

holds when we replace the gaussian distributions by t-distributions. However, it is not

true that conditionally independent distributions are substitutes under canonical scoring

rules, and we give some qualitative properties when they should be substitutes. Lastly,



32

we consider a parametrized non-canonical scoring rules and characterize substitutabil-

ity of conditionally gaussian signals. Similar to the findings in Subsection 4.3.1, we

find that, surprisingly, conditionally independent gaussian signals are complements for

a wide range of parameters in the scoring rule.

4.1 Common Information Structures

In this section, we list some common information structures that are used in economics

and computer science and explain their motivations and variations.

4.1.1 Independent Signals

In this information structure, all signals A1, . . . , An are independent, and a distribution

E|A1, . . . , An along side each distribution of Ai are specified.

This information structure is most appropriate when each person i receives a different

piece of information, and all signals must be combined to get the outcome. For example,

suppose E is the value of a house. The value of a house can be decomposed into the

values of the concrete structures that make up house itself (A1), the land on which

the house is built (A2) and idiosyncratic noise (such as consumer sentiment.) Agent

1, the concrete manufacturing company, gets signal A1 and agent 2, the real estate

company, gets signal A2, each drawn from an independent distribution. The value of

the outcome/house E is a randomized function of A1 and A2.

In the discrete case, we can assume that signal Ai can take mi values 1, 2, . . . ,mi and

P(Ai = a) = αi,a for 1 ≤ a ≤ mi, 1 ≤ i ≤ n. E takes d values 1, 2, . . . , d and the

conditional distribution P(E = e|A1 = a1, . . . , An = an) = βe,a1,...,an for 1 ≤ e ≤ d

and 1 ≤ ai ≤ mi. The numbers αi,a and βe,a1,...,an need to be specified. This setup

is unwieldy. Without additional restriction on the β’s, we need to specify dm1 . . .mn

values of β’s, which are exponential in n because mi ≥ 2. There is no canonical way to

simplify this model.

We add symmetry to the above model to get independent exchangeable signals with

conditionally symmetric event. Signals A1, . . . , An are independent and identically dis-

tributed, each taking s values 1, 2, . . . , s with prior probabilities α1, α2, . . . , αs. E takes

d values 1, 2, . . . , d. We are given the distribution of E|A1, . . . , An as follows. Assume

the conditional distribution of E is symmetric in the signals, and that if there are

n1, n2, . . . , ns of A1, . . . , An that take value 1, 2, . . . , s respectively, then the probability

of E = e given A1, . . . , An is βe,(n1,...,ns). We think of d and s as constants independent
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of n. To describe this model, d and s and each αe and each βe,(n1,...,ns). The number of

β’s is the number of nonnegative s-tuples (n1, . . . , ns) such that n1 + · · ·+ns = n, which

are
(
n+s−1

s

)
= O(ns) so this model can be described in polynomial time. Moreover,

this shows that s must not grow with n, otherwise the description of the model will

no longer be polynomial in n. The assumption that d is constant corresponds to the

empirical reality that in many prediction markets, the number of outcomes are small

and do not grow with the size of the market. For example, in a market for election

results, there are a small number d of candidates who might win.

The independent signals model is much more commonly expressed (especially in informa-

tion economics) in the continuous setting. µ1, . . . , µn and σ2
1, . . . , σ

2
n > 0 are given such

that Ai is independently drawn from a normal distribution Ai ∼ N (µi, σ
2
i ). µε, σ

2
ε > 0

are also given so that the idiosyncratic noise ε ∼ N (µε, σ
2
ε ). The outcome is modeled as

a sum of components E = A1 + · · ·+An + ε.

Note that ε does not have to actually be idiosyncratic; it might simply contain additional

information that are not in any of the signals and can thus be treated as probabilistic

by every agent. All the µs can also be normalized to all be 0 because they are known

constants and thus we can consider A1−µ1, . . . , An−µn, ε−µε in place of A1, . . . , An, ε

without changing the information structure. Therefore, we set µ1 = · · · = µn = µε = 0

This setting is especially convenient because not only are all the signals and the outcome

normally distributed, but any posterior distribution of outcome conditional on a subset

of signals is also normally distributed, and its distribution can be computed as

E
∣∣∣(Ai = ai for i ∈ S) ∼ N

∑
i∈S

ai, σ
2
ε +

∑
i 6∈S

σ2
i

 (4.2)

To describe the continuous model, we need to specify n+ 1 numbers σ2
1, . . . , σ

2
n, σ

2
ε .

4.1.2 Conditionally Independent Signals

In this information structure, A1, A2, . . . , An are conditionally independent given E, and

the distribution of Ai|E is specified for each E.

This information structure is appropriate if there is a true value E and each agent i

observes an independent noisy estimate Ai of E. For example, there is some amount

of gold E in an unexplored gold mine. Each company i hires a private surveyor to get

an independent estimate Ai of the amount of gold in the mine. (In fact, often in the

economics literature, the model of this form is called the “mineral rights model.”)
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In the discrete case, we can assume that the outcome E takes d values 1, 2, . . . , d with

probabilities P(E = e) = αe. For each i, Ai|E takes mi values 1, 2, . . . ,mi with prob-

abilities P(Ai = a|E = e) = βi,a,e. The numbers αe and βi,a,e need to be specified.

There are (1 + n
∑n

i=1mi) d variables to specify, so the model is already polynomially

described. Nevertheless, it still is rather unwieldy and asymmetric.

We can add symmetry to the above model to get the conditionally independent and

exchangeable signals. The outcome E takes d values 1, 2, . . . , d with probabilities P(E =

e) = αe. Signals A1, . . . , An each take s values 1, . . . , s and are independent and iden-

tically distributed conditional on any realization of E = e with probabilities P(Ai =

a|E = e) = βa,e. By Bayes’ rule,

P(E = e|Ai = ai for i ∈ S) =
αe
∏
i∈S βai,e∑

e′ αe′
∏
i∈S βai,e′

(4.3)

If |S| = k, and among (Ai)i∈S , there are uj signals with value j, 1 ≤ j ≤ s,
∑s

j=1 uj = k,

then the above equation can be rewritten as

P(E = e|Ai = ai for i ∈ S) =
αe
∏s
j=1 β

uj
j,e∑

e′ αe′
∏s
j=1 β

uj
j,e′

(4.4)

This model is especially important because it has a polynomial linear program solution.

The conditionally independent model is also much more commonly expressed in in-

formation economics in the continuous setting. σ2
1, σ

2
2, . . . , σ

2
n, σ

2
E are given such that

E ∼ N (0, σ2
E) and Ai|E = e ∼ N (e, σ2

i ) are conditionally independent.

Any posterior distribution of outcome conditional on a subset of signals is also normally

distributed, and its distribution can be computed because (A1, . . . , An, E) are jointly

multivariate normal and a subvector of a multivariate normal conditional on another

subvector is multivariate normal. To derive the analytical formulas, we use the following

classical conditional result. If y ∼ N (µ,Σ) is a multivariate normal random variable that

can be partitioned as

y =

(
y1

y2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
(4.5)

then y1|y2 ∼ N (µ̄, Σ̄) with mean and covariance

µ̄ = µ1 + Σ12Σ−1
22 (y2 − µ2) (4.6)

Σ̄ = Σ11 − Σ12Σ−1
22 Σ21 (4.7)
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In this case, we get

E|(Ak)k∈S = N

( ∑
k∈S Akσ

−2
k

σ−2
E +

∑
k∈S σ

−2
k

,
1

σ−2
E +

∑
k∈S σ

−2
k

)
(4.8)

4.1.3 Dependent Signals

There are information structures that do not fall either in the catagories of independent

or conditionally independent signals, because all we need to do is to specify the joint

distribution (A1, . . . , An, E). Since conditional distributions play a big role, a multivari-

ate gaussian is often the only tractable choice. We can choose a (n+1)× (n+1) positive

definite matrix Σ and let (A1, . . . , An, E) ∼ N (0n+1,Σ).

Avery (1998) proposes the following information structure for n = 2 in his model of

jump bidding. Let X ∼ N (0, σ2
X), Y ∼ N (0, σ2

Y ), Z ∼ N (0, σ2
Z) be independent and

A1 = X + Y,A2 = X + Z,E = A1 +A2 = 2X + Y + Z.2 We can write
E

A1

A2

 ∼ N



0

0

0

 ,


4σ2

X + σ2
Y + σ2

Z 2σ2
X + σ2

Y 2σ2
X + σ2

Z

2σ2
X + σ2

Y σ2
X + σ2

Y σ2
X

2σ2
X + σ2

Z σ2
X σ2

X + σ2
Z




We can calculate conditional distributions as in Subsection 4.1.2 and get

E|A1 ∼ N
(

2σ2
X + σ2

Y

σ2
X + σ2

Y

A1,
σ2
Xσ

2
Y + σ2

Xσ
2
Z + σ2

Y σ
2
Z

σ2
X + σ2

Y

)
(4.9)

E|A2 ∼ N
(

2σ2
X + σ2

Z

σ2
X + σ2

Z

A2,
σ2
Xσ

2
Y + σ2

Xσ
2
Z + σ2

Y σ
2
Z

σ2
X + σ2

Z

)
(4.10)

E|A1, A2 = A1 +A2 (4.11)

4.2 Predicting Discrete Probability Distributions

4.2.1 Convexity and Nontriviality Conditions

There are three types of inequalities that we need to consider to verify substitutability:

(i) submodularity of the value of information function, (ii) convexity of G, (iii) nontriv-

iality of G. We already discussed in the introduction that (i) can be written as a set of

2We scale up E by two compared to Avery’s model, but in the informational context, they are
equivalent. Also, in Avery’s model, X,Y, Z are independent uniforms, but Avery proposed this model
in the context of auctions, where uniform distributions are most tractable, but in our context, gaussian
distributions are most tractable.
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linear inequalities. The following proposition shows that (ii) convexity can be written

as a set of linear inequalities.

Proposition 4.1. If we are given n points (xi, yi) with xi ∈ Rd, yi ∈ R, 1 ≤ i ≤ n.

The necessary and sufficient condition that there exist a convex G : Rd → R such that

G(xi) = yi is a list of O(poly(nd)) inequalities, all linear in y1, . . . , yn.

Proof. The necessary and sufficient condition is the following. Take any d + 1 points

(xi, yi). These d+1 points determine a hyperplane in Rd×R and the d+1 x-components

xi form a convex hull H. For any (xj , yj) such that xj lies within the convex hull H,

the value yj must be ≤ the value determined by the hyperplane determined by the d+ 1

points. There are
(
n
d+1

)
= O(poly(nd)) ways to choose d+1 points, and at most n points

each to lie inside the convex hull. Note that these are necessary and sufficient, and they

consist of O(poly(nd)) inequalities, all linear in yi’s.

Next, we address (iii) nontriviality. If G : ∆d−1 → R is convex and G(ei) = 0 for all i

(Proposition 3.2), then convexity of G implies that G(q) ≤ 0 for all q ∈ ∆d−1. We can

then say that G is nontrivial if G(q) < 0 for some q. Convexity of G implies again that

if G is zero at an interior point of the simplex ∆d−1 then it must be identically zero.

Therefore, we can put the nontriviality condition simply by picking an interior point q0

and ask that G(q0) is strictly negative. Since Proposition 3.2 allows us to scale G by any

positive factor, we can put this condition as G(q0) ≤ −1. We prefer this form because

standard linear programming solvers only deal with ≥ and ≤ and not strict inequalities.

4.2.2 Linear Programs and Custom Design

We now develop the idea introduced in the introduction to view the values of G at

specific points as variables in a linear program. The following theorem shows that in

some interesting information structures, there are polynomially many points that are

of concern, and hence the linear programming with look-up table for G is feasible in

polynomial time. The details of information structures are repeated in the theorem

statement for the reader’s convenience.

Theorem 4.2. In the following information structures, a G can be found or proved not

exist in time polynomial in n using a linear program solver.

1. Independent Exchangeable Signals with Conditionally Symmetric Event (Subsec-

tion 4.1.1) Signals A1, . . . , An are independent and identically distributed, each

taking s values 1, 2, . . . , s with prior probabilities α1, α2, . . . , αs. E takes d values
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1, 2, . . . , d. The conditional distribution E|A1, . . . , An is symmetric in the signals,

and that if there are n1, n2, . . . , ns of A1, . . . , An that take value 1, 2, . . . , s respec-

tively, then the probability of E = e given A1, . . . , An is βe,(n1,...,ns). d and s as

constants independent of n.

2. Conditionally Independent and Exchangeable Signals (Subsection 4.1.2) The out-

come E takes d values 1, 2, . . . , d with probabilities P(E = e) = αe. Signals

A1, . . . , An each take s values 1, . . . , s and are independent and identically dis-

tributed conditional on any realization of E = e with probabilities P(Ai = a|E =

e) = βa,e.

Proof. In both cases, signals are exchangeable and independent. Therefore, any condi-

tional on k signals are the same.. We call this the k-expected score ESk = E|S|=kG(paS ).

The expression for ESk depends on the information structure. By symmetry, the sub-

modularity condition is equivalent to ESk+2 + ESk ≥ 2ESk+1 for 0 ≤ k ≤ n− 2. Since

we already showed in Subsection 4.2.1 that convexity and nontriviality conditions can be

formulated as polynomially many linear inequalities in the number of variables. There-

fore, the linear program has polynomially many inequalities. To show that it can be

solved in polynomial time, we only need to show that the linear program has polynomi-

ally many variables. In other words, there are polynomially many possible arguments

of G that are present in (ESk)0≤k≤n−2.

1. In the case of independent exchangeable signals with conditionally symmetric

event, the k-expected score is given by

ESk =
∑

u1+···+us=k,0≤ui≤k

(
k

u1, . . . , us

)
αu11 . . . αuss ×

G

 ∑
v1+···+vs=n−k,0≤vj≤n−k

(
n− k

v1, . . . , vs

)
αv11 . . . αvss β(u1+v1,...,us+vs)


where β(n1,...,ns) =

(
βe,(n1,...,ns)

)
e∈E . We also note the fact that an equation x1 +

· · · + xs = y has
(
y+s−1
s−1

)
= O(ys−1) solutions in nonnegative integers. There are

O(ks−1) s-tuples u = (u1, . . . , us), and each u is associated with one variable G(·).
The argument of that G(·) can be computed by summing over all O((n−k)s−1) =

O(ns−1) terms of v, which can be done in polynomial time. Therefore, there are

O(ks−1) variables in ESk, so summing over all k, there are
∑

k O(ks−1) = O(ns)

variables in total, which is polynomial in n.
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2. In the case of conditionally independent and exchangeable signals, the k-expected

score is given by

ESk =
∑

u1+···+us=k,0≤ui≤k

(
k

u1, . . . , us

)∑
e′

αe′
s∏
j=1

β
uj
j,e′

G

((
αe
∏s
j=1 β

uj
j,e∑

e′ αe′
∏s
j=1 β

uj
j,e′

)
e∈E

)

Every expression can be computed in polynomial time. As in 1., there are O(ks−1)

s-tuples u = (u1, . . . , us), and each u is associated with one variable G(·), so the

total number of variables is
∑

k O(ks−1) = O(ns), which is polynomial in n.

Before we proceed, we note that Proposition 2.10 tells us that independent signals are

complements if the Bregman divergence DG of G are jointly convex. This tells us that

if we can find a convex G in Theorem 4.2, then DG is not jointly convex.

On the one hand, the meta-message of Proposition 2.10 is that independent signals are

not friendly to substitutability. On the other hand, we might expect that conditionally

independent signals should be quite friendly to substitutability because each person has

a noisy observation of the true value (recall 4.1.2). Since they are observations of the

same value, the value of the first signal should be more than the marginal signal that

observes the same thing.

Broadly speaking, conditionally independent signals are more conducive to substitutabil-

ity, but whether a G can be designed depends intricately on both the details (or param-

eters) of the information structure, and the outcome as a function of signals.

For example, consider the following problem. Let A1, . . . , An be independent and iden-

tically distributed binary signals such that P(Ai = 1) = p, and let E be a symmetric

boolean function of the signals, then E can be completely characterized by the set

S ⊆ {0, 1, . . . , n} such that

E = f(A1, . . . , An) = 1[the number of 1s in Ai is in set S]

We are interested in all possible E, that is, all possible sets S, such that a substitutability-

inducing convex G exists. Let’s provisionally call such a set S good for convenience. We

know a priori that E in the form of XOR or negation cannot work, that is {2k : 0 ≤ k ≤
n/2} and {2k + 1 : 0 ≤ k ≤ (n − 1)/2}. In Proposition 4.3, we show that {n} is good.

There are also two immediate symmetries that are easily checked.

• If S is a good set, then {0, 1, . . . , n} \ S is a good set.
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• If S = {s1, . . . , su} is a good set, then S′ = {n− s1, . . . , n− su} is a good set.

However, the restriction from universal complements is far from enough. Even though

some information structures are not universal complements, no substitutability-inducing

G exists. They are “in between” substitutes and complements. For concreteness, let

(n, p) = (5, 1/3). Universal complements prohibit {0, 2, 4} and {1, 3, 5}. There are 26

subsets of {0, 1, 2, . . . , 5}, but by direct computation using linear programs as in Theorem

4.2, only 10 sets S are good:

{1, 2, 3, 4, 5}, {0, 4, 5}, {4, 5}, {0, 1, 2, 3, 5}, {0, 5}, {1, 2, 3, 4}, {4}, {0, 1, 2, 3}, {1, 2, 3}, {0}

Theorem 4.2 gives us a general recipe to use a linear program to design a G. We can,

alternatively, use the “intuition” behind substitutability to design a custom G for par-

ticular information structures. In particular, we want the G to have diminishing return,

so we want “high” curvature near the prior and “low” curvature near the boundary. At

the same time, convexity of G enforces that the curvature near the prior cannot be too

high compared to curvature near the boundary. This tension highlights the difficulty

of designing a valid G. A G exists and can be designed if and only if such a resolu-

tion is possible. The drawback of this approach is that it requires a careful analysis of

the information structure at hand and can be ad hoc. However, if we succeed, we can

explicitly design G. The next proposition demonstrates this approach.

Proposition 4.3. If A1, . . . , An are independent binary signals such that each is 1 with

probability p ∈ (0, 1), then if E = A1 ∧ · · · ∧ An, then we can find a decision problem

that these signals are substitutes.

Proof. The k-expected score is ESk = p−kG(pn−k). LetG(0) = G(1) = 0 andG(p−(n−t)) =

−1 + M tε with M, ε chosen later. Then submodularity is equivalent to 2ESk+1 ≥
ESk+2 +ESk for all k, which reduces to ε ≤ (1−p)2

Mk(Mp−1)2
, so for any fixed M > 1/p we can

find ε small enough that this is satisfied. Convexity requires G(p−(n−(k+1))−G(p−(n−k))

p−(n−(k+1))−p−(n−k) ≥
G(p−(n−k))−G(p−(n−(k−1)))

p−(n−k)−p−(n−(k−1)) which reduces to M ≥ 1/p, and G(pn−1)−G(pn)
pn−1−pn ≥ G(pn)−G(0)

pn−0

which reduces to p(M − 1)ε ≥ (1− p)(ε− 1) which is true if M > 1 and 0 < ε < 1, and
G(1)−G(p)

1−p ≥ G(p)−G(p2)
p−p2 which reduces to ε ≤ p

(1+p)Mn−1−Mn−2 which for M > 1 is true

for sufficiently small ε. So we can choose any M > 1/p and ε sufficiently small to finish

our construction.

Note that by bit flip symmetry, we can modify the G of Proposition 4.3 to get another

G that induces substitutability for E = A1 ∨ · · ·An = ¬(¬A1 ∧ · · · ∧ ¬An).
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4.2.3 Designing Interpretable Expected Score Functions

Even if there are a polynomial number of values of G that we care about, the direct

linear programming approach outlined above gives an uninterpretable lookup-table ap-

proach; the values of G are just a list of numbers that satisfy all the necessary condi-

tions as determined by the linear program solver. We might prefer a function G from a

parametrized family. Let G1, . . . , Gm be known functions of a distribution q. We can let

G(q) =
∑m

i=1 θiGi(q), where θi are unknown parameters. The function G is now inter-

pretable: it is a weighted combination of m features G1, . . . , Gm which can be explained

to market participants. Moreover, the set of inequalities are still linear in parameters

θ1, . . . , θm, so we can find appropriate values for them by linear programming.

4.3 Predicting Continuous Probability Distributions

In this section, we consider the problem of predicting continuous probability distribu-

tions. Even though the forecaster cannot submit the density of her belief at every

point because there is an infinite of them, if her belief is structured (say, following a

parametrized distribution), she can report the type of the distribution and its parame-

ters. The aggregator then reconstructs her belief and uses the generalization of scoring

rules to continuous distributions to score her answer. We follow the notations related

to continuous scoring rules from Gneiting and Raftery (2007).

Following Gneiting and Raftery (2007), there is a correspondence between a scoring rule

and the convex expected score function G. We have used this fact before in the case of

discrete probability distributions, but this fact holds for general measurable spaces as

well. We are especially interested in scoring rules in the class Sα that has the expected

score function G(p) = ||p||αα, where ||p||α =
(∫
p(e)αde

)1/α
is the α-norm.

The class Sα encompasses many strictly proper scoring rules used in practice. The log

scoring rule LogScore(p, e) = log p(e) is achieved for α→ 1. The quadratic scoring rule

QS(p, e) = 2p(e) − ||p||22 with G(p) = ||p||22 corresponds to α = 2. The pseudospherical

score PseudoS(p, e) = p(e)α−1/||p||α−1
α corresponds to general α, and reduces to the

spherical score when α = 2.

We are mostly interested in this class Sα of scoring rules in this section. In particular,

for a given information structure, we might ask which values of α can induce substitutes,

or whether, fixing a scoring rule in this class, varying correlations between signals can

induce substitutes or complements.
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First, we need to be able to compute the α-norm of standard distributions. The following

proposition does so for Normal and Cauchy. We use Normal and Cauchy because we

are adding random variables, and both Normal and Cauchy are stable distributions –

the sum of two independent random variables in the family still belong to the family.

Proposition 4.4. Let α > 1.

1. If p ∼ N (µ,Σ) is multivariate normal, then ||p||αα = const(α)× |Σ|−(α−1)/2.

2. If p ∼ Cauchy(x0, γ), then ||p||αα = const(α)× γ−(α−1)/2

where const(α) depends only on α, and |Σ| is the determinant of Σ.

Even though the log scoring rule can be recovered from Sα with α → 1, it is often

more convenient to work with it directly. With log scoring rule, the expected score is

G(p) =
∫
p(x) log p(x)dx = −H(p), where H is the (Shannon) entropy. Entropies for

Normal and Cauchy distributions are standard.

Proposition 4.5. Let H(p) =
∫
p(x) log p(x)dx be the entropy of distribution p.

• If p ∼ N (µ,Σ), then H(p) = 1
2 log((2πe)k|Σ|) = const + 1

2 log |Σ|

• If p ∼ Cauchy(x0, γ), then H(p) = − log(4πγ) = const− log γ

Proposition 2.10 tells us that independent signals are complements if DG is jointly

convex. We already know that α = 2 corresponds to a quadratic scoring rule with

DG(p, q) = ||p−q||22 with is jointly convex. However, within the family Sα, if α > 2 then

DG is not jointly convex.

Proposition 4.6. Let G(p) = ||p||αα for any distribution p, and α > 2, then DG(p, q) is

not convex in q, and thus not jointly convex.

Proof. We assume that p = (pi)
n
i=1, q = (qi)

n
i=1. The infinite case follows by standard

limit argument. We have

DG(p, q) = G(p)−G(q)−G′(q) · (p− q) =
∑
i

(
pαi − qαi − αqα−1

i (pi − qi)
)

=
∑
i

(
pαi + (α− 1)qαi − αqα−1

i pi
)

Since α > 2, we can calculate

∂2

∂q2
k

DG(p, q) = α(α− 1)2qα−2
k − α(α− 1)(α− 2)qα−3

k pk
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For a fixed qk, we can choose pk large enough so that ∂2

∂q2k
DG(p, q) < 0, so DG(p, q) is

not convex in q. As a result, it is not jointly convex.

4.3.1 Conditionally Independent Gaussian Signals

Before we prove the main result, we will prove a technical lemma, which is an inequality

that shows up not only in this section, but in many sections after.

Lemma 4.7. If 0 ≤ λ ≤ 1, then for any x, y, z ≥ 0,

(x+ y)λ + (x+ z)λ ≥ (x+ y + z)λ + xλ

If λ ≤ 0 or λ ≥ 1, then for any x, y, z ≥ 0,

(x+ y)λ + (x+ z)λ ≤ (x+ y + z)λ + xλ

Proof. Let f(y) = (x+y)λ+(x+z)λ−(x+y+z)λ−xλ, then f ′(y) = λ
(
(x+ y)λ−1 − (x+ y + z)λ−1

)
.

If 0 ≤ λ ≤ 1, then f ′(y) ≥ 0, so f(y) ≥ f(0) = 0. If λ ≤ 0 or λ ≥ 1, then f ′(y) ≤ 0, so

f(y) ≤ f(0) = 0.

Now we use Lemma 4.7 to characterize substitutes and complements for conditionally

independent gaussian signals in Proposition 4.8. This is the main result of this section.

The proof is by direct calculation.

Proposition 4.8. Let E ∼ N (0, σ2
E) and Ai|E ∼ N (E, σ2

i ), i = 1, . . . , n, are condition-

ally independent given E, then (A1, . . . , An;E) are substitutes under the log scoring rule

and Sα for 1 < α ≤ 3, and are complements under Sα for α ≥ 3.

Proof. We review the properties of this model in Subsection 4.1.2. In particular, since

the expected score of the log or the Sα scoring rule of a gaussian only depends on the

various, we are only interested in the variance of conditional distributions, which we can

write as

Var (E|(Ak)k∈S) =

(
σ−2
E +

∑
k∈S

σ−2
k

)−1

Recall that the expected score of N (µ, σ2) under Sα is (σ2)−β for β = (α − 1)/2. To

verify substitutability, let S ⊆ {1, 2, . . . , n} and i, j ∈ {1, 2, . . . , n} \S. We need to show

that

EG(pSai) + EG(pSaj ) ≥ EG(pSaiaj ) + EG(p)
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Let x = σ−2
E +

∑
k∈S σ

−2
k , y = σ−2

i , z = σ−2
j , the above inequality reduces to

(x+ y)β + (x+ z)β ≥ xβ + (x+ y + z)β

which is true by Lemma 4.7 since 0 < β ≤ 1. Note that by the same lemma, (A1, . . . , An;E)

are complements under Sα for α ≥ 3.

The log scoring rule can be proved by taking the limit α → 1. It can also be proved

directly. Let x, y, z be as above, then using the expected score expression for the log

scoring rule, the inequality reduces to (x+ y)(x+ z) ≥ x(x+ y + z) or yz ≥ 0.

4.3.2 Correlation Thresholds for Independent Gaussian Signals

Proposition 4.9. Let A1 ∼ N (0, σ2
1), A2 ∼ N (0, σ2

2), ε ∼ N (0, σ2
ε ) be such that E =

A1 +A2 + ε, (A1, A2) is independent of ε, and (A1, A2) is jointly normal with correlation

ρ. Let the scoring rule be from Sα. Fix σ2
1, σ

2
2, σ

2
ε , α, but let ρ vary. Either (A1, A2;E)

are always complements, or there exists a ρ∗ > 0 such that if ρ ≥ ρ∗, then (A1, A2;E)

are substitutes and if ρ ≤ ρ∗, then (A1, A2;E) are complements.

Proof. The value ρ induces substitutes if and only if

(σ2
1 + σ2

ε )
−β + (σ2

2 + σ2
ε )
−β ≥ (σ2

ε )
−β + (σ2

1 + σ2
2 + σ2

ε + 2ρσ1σ2)−β

for β = (α−1)/2 > 0. The left hand side is fixed and the right hand side is a decreasing

function of ρ. Therefore, either this inequality is always false or there exists a ρ∗ such

that this is true if and only if ρ ≥ ρ∗. Moreover, this inequality is false for ρ = 0 by

Lemma 4.7, so ρ∗ > 0

The theorem quantifies an intuitive fact that signals that are more correlated tend to be

closer to substitutes. Note that the result is much cleaner than the discrete distribution

case, because we have tractable distributions, and we can talk sensibly about correlations

in the Normal model.

For intuition, we can redo Proposition 4.9 with the log scoring rule (corresponding to

α→ 1). The value ρ induces substitutes if and only if

− log(σ2
1 + σ2

ε )− log(σ2
2 + σ2

ε ) ≥ − log(σ2
ε )− log(σ2

1 + σ2
2 + σ2

ε + 2ρσ1σ2) (4.12)
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which is equivalent to

ρ ≥ σ1σ2

σ2
ε

If σ2
ε < σ1σ2, then the inequality is always false. This is intuitive because if the outcome

noise σε is low compared to the noise from agent observations σ1,2, then the two sig-

nals complement each other in that the two signals combined can predict the outcome

precisely, but each individual signal cannot because the signal is noisy.

In general, it is not true that ρ∗ is an increasing function of σ1, σ2 and a decreasing

function of σε. The reader can check that (σ2, σε, β) = (0.1, 0.1, 0.5) is a counterexample.

4.3.3 Complements In Independent Signals Prove New Inequalities

This subsection is not directly connected to the main narrative, but is interesting

nonetheless and best fits here. We use the fact that independent signals are complements

if DG is jointly convex (Proposition 2.10) to prove new inequalities. The log scoring rule

and the quadratic scoring rule have jointly convex Bregman divergence DG(p, q), because

they are KL(p||q) and ||p − q||22, so this proposition applies. Consider the information

structure E = A1 + A2 + ε with A1 ∼ N (0,Σ1), A2 ∼ N (0,Σ2), ε ∼ N (0,Σε) are inde-

pendent multivariate normals with the same dimension. The conditional distributions

are easily computed

E ∼ N (0,Σ1 + Σ2 + Σε)

E|A1 ∼ N (A1,Σ2 + Σε)

E|A2 ∼ N(A2,Σ1 + Σε)

E|A1, A2 ∼ N (A1 +A2,Σε)

The inequality for complements is

EG(p) + EG(pa1a2) ≥ EG(pa1) + EG(pa2)

If we let G(p) = ||p||αα, then EG(pa1) = E |Σ2 + Σε|−(α−1)/2 = |Σ2 + Σε|−(α−1)/2. Other

terms can be computed similarly. Substituting these terms back, we get

|Σ1 + Σ2 + Σε|−β + |Σε|−β ≥ |Σ1 + Σε|−β + |Σ2 + Σε|−β

for β = (α−1)/2. We know that this inequality must be true for 1 ≤ α ≤ 2. We can also

substitute G(p) = −H(p) for log scoring rule. The computation is similar; for example,
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EG(pa1) = E−1
2 log |Σ2 + Σε| = −1

2 log |Σ2 + Σε|. Since Σ1,Σ2,Σε can be any positive

semidefinite matrix, we get the following

Proposition 4.10. Let A,B,C be any positive semidefinite matrices. We have

1. |A+B + C| · |A| ≤ |A+B| · |A+ C|

2. |A+B + C|−β + |A|−β ≤ |A+B|−β + |A+ C|−β for 0 ≤ β ≤ 1/2.

We conjecture that the inequality |A + B + C|−β + |A|−β ≤ |A + B|−β + |A + C|−β

holds for any β > 0 and positive semidefinite matrices A,B,C. This is true for one

dimension because then A,B,C are positive scalars, and we can easily check that the

difference between the two sides is an increasing function of B, so it reaches its minimum

at B = 0 where the two sides are equal. This conjecture is equivalent to the information

settings that if E = A1 +A2 +ε and A1, A2, ε are independently drawn from multivariate

normal distributions, then (A1, A2;E) are complements. This class of matrix inequalities

seem to be closely related to the Minkowski determinant theorem and tensor product

inequalities (Marcus and Minc, 2010; Berndt and Sra, 2015). In general, these types of

inequalities are very hard to prove. We do not know an independent proof of Proposition

4.10.

4.4 Predicting Distribution Properties

In this section, traders are not predicting the entire probability distribution of outcomes.

They only predict a property. Recall the extended discussions in Section 2.4. When

eliciting means (expectations), the expected score function can be written as G(E q),
where q is the forecaster’s belief and G a convex function. We call a mean-eliciting

scoring rule canonical if s[r](e) = −(r − e)2, or equivalently, G(r) = r2 where r is

the reported mean. This canonical scoring rule has an equivalent representation of

the expected score as −Var(q). We call a median-eliciting scoring rule canonical if

s[r](e) = −|r − e|, which has the expected score −cσ, if q = N (µ, σ2).

We first show that conditionally independent normal signals are substitutes, while inde-

pendent normal signals are complements, under the mean-eliciting and median-eliciting

canonical scoring rules. The proofs are by direct calculation and Lemma 4.7.

Proposition 4.11. Let E ∼ N (0, σ2
E) and Ai|E ∼ N (E, σ2

i ), i = 1, 2, . . . , n, are con-

ditionally independent given E, then (A1, . . . , An;E) are substitutes under the mean-

eliciting and median-eliciting canonical scoring rules.
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Proof. We use the same expression as those in Proposition 4.8 that Var (E|(Ak)k∈S) =(
σ−2
E +

∑
k∈S σ

−2
k

)−1
, with G(q) = −Var(q)β, with β = 1 and 1/2 for mean-eliciting

and median-eliciting scoring rules, respectively. To show that EG(pSai) + EG(pSaj ) ≥
EG(pSaiaj ) +EG(p), let x = σ−2

E +
∑

k∈S σ
−2
k , y = σ−2

i , z = σ−2
j , the inequality reduces

to (x+ y)−β + (x+ z)−β ≥ x−β + (x+ y + z)−β, which is true by Lemma 4.7.

Proposition 4.12. Let ε ∼ N (0, σ2
ε ) and Ai ∼ N (0, σ2

i ), i = 1, . . . , n, be independent

and E = A1+· · ·+An+ε, then (A1, . . . , An;E) are complements under the mean-eliciting

and median-eliciting canonical scoring rules.

Proof. We use the fact that Var (E|(Ak)k∈S) = σ2
E +

∑
k 6∈S σ

2
k, with G(q) = −Var(q)β,

with β = 1 and 1/2 for mean-eliciting and median-eliciting scoring rules, respectively. To

show that EG(pSaiaj )+EG(p) ≥ EG(pSai)+EG(pSaj ), let T = {1, 2, . . . , n}\(S∪{i, j})
and x = σ2

E +
∑

k∈T σ
2
k, y = σ2

i , z = σ2
j , the inequality reduces to xβ + (x + y + z)β ≥

(x+ y)β + (x+ z)β, which is true by Lemma 4.7.

Proposition 4.13. Let X ∼ N (0, σ2
X), Y ∼ N (0, σ2

Y ), Z ∼ N (0, σ2
Z) be independent

and A1 = X + Y,A2 = X + Z,E = A1 + A2 = 2X + Y + Z (see Subsection 4.1.3),

then (A1, A2;E) are substitutes under the canonical mean-eliciting scoring rule, but not

under the canonical median-eliciting scoring rule.

Proof. Let G(q) = −Var(q)β, with β = 1 and 1/2 for canonical mean-eliciting and

median-eliciting scoring rules, respectively. The inequality to be proved is

(
σ2
Xσ

2
Y + σ2

Xσ
2
Z + σ2

Y σ
2
Z

σ2
X + σ2

Y

)β
+

(
σ2
Xσ

2
Y + σ2

Xσ
2
Z + σ2

Y σ
2
Z

σ2
X + σ2

Z

)β
≤ (4σ2

X + σ2
Y + σ2

Z)β

Let y = σ2
Y /σ

2
X and z = σ2

Z/σ
2
X . For β = 1, the inequality reduces to

y + z + yz

1 + y + z + yz
(2 + y + z) ≤ 4 + y + z

Let y + z = 2t. The left hand side is an increasing function in yz. Since yz ≤ t2, it

suffices to show the inequality for yz = t2, where it reduces to 2t+t2

(1+t)2
(2 + 2t) ≤ 4 + 2t,

which is true.

For β = 1/2, a counterexample is (y, z) = (1, 2).

Proposition 4.11 shows that conditionally independent signals are substitutes under a

canonical scoring rule if the signals are gaussian. This is no longer true in non-gaussian

models.
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The two given counterexamples are instructive. The first shows that bit-corruption

(which is not additive) is an unacceptable form of noise. The second shows that even

if noises are additive, signals can fail to be substitutes if the noise is monotone in the

sense that the noise can only push the signal one way (in this case, make the signal value

higher) rather than randomly making the outcome lower or higher with equal probability

as in the case of gaussian signals.

Proposition 4.14. It is not true that if A1 and A2 are conditionally independent given

E, then (A1, A2;E) are substitutes under a canonical scoring rule. The following two

information structures are counterexamples in the sense that there are parameter values

that make the signals not substitutes.

1. A1, A2, E are binary ({0, 1}-valued) such that P(E = 1) = πE and for each i = 1, 2,

Ai|E are conditionally independent with P(Ai = e|E = e) = π for e ∈ {0, 1}.

2. Let E, ε1, ε2 be independent binary signals which are 1 with probabilities πE , π1, π2

respectively, and A1 = E + ε1, A2 = E + ε2.

Proof. We check substitutability by calculation. See details in Appendix A.3.1.

In the first case, substitutability is equivalent to

1 + 2π(1− π) + (1− π)2π2

(
1

(1− π)2πE + π2(1− πE)
+

1

πEπ2 + (1− πE)(1− π)2

)
≥

2π(1− π)

(
1

(1− π)πE + π(1− πE)
+

1

πEπ + (1− πE)(1− π)

)
A counterexample is (πE , π) = (0.99, 0.49).

In the second case, substitutability is equivalent to

1 +
π1π2π̄1π̄2

πE π̄1π̄2 + π̄Eπ1π2
≥ π1π̄1

πE π̄1 + π̄Eπ1
+

π2π̄2

πE π̄2 + π̄Eπ2

A counterexample is (πE , π1, π2) = (0.95, 0.8, 0.8).

The case of gaussian signals is a special case, but we show the robustness of this result by

checking substitutability for t-distributed signals in Proposition 4.15. This is especially

useful since in finance and economics, sometimes we want to model the noise with

something thicker-tailed than the normal, such as the t-distribution or Cauchy (which

is t with one degree of freedom). The standard normal distribution is t-distributed with

infinite degrees of freedom.
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The t-distributions are much harder to deal with than gaussians because conditional

distributions have to be computed numerically. Moreover, the fact that they are thick-

tailed sometimes causes numerical instabilities in the integration procedure, and errors

need to be carefully accounted for to verify submodularity inequalities within acceptable

error tolerances. In fact, up to this point, we verify substitutability directly via Definition

2.15, which requires computing conditional distributions, but computing conditional

distributions are challenging for most non-gaussian distributions. An interesting future

research direction is coming up with a more practical way to check substitutability.

Proposition 4.15. Let c · tdf be a distribution of cX where X is t-distributed with

df degrees of freedom. Let dfE , df1, df2 ≥ 1 and cE , c1, c2 > 0. Let E ∼ cE · tdfE , ε1 ∼
c1 ·tdf1 , ε2 ∼ c2 ·tdf2 be independent and A1 = E+ε1, A2 = E+ε2. Numerical simulations

suggest that (A1, A2;E) are substitutes under a canonical mean-eliciting scoring rule, or

at least that they are substitutes under a reasonable range of parameters.

Proposition 4.15 suggests that the gaussian signals model (that we use for most of the

chapter) captures two salient aspects that are robust to perturbation. First, both the

outcome and the noises are symmetric bell-shaped curves with a peak that levels off in

both directions. This avoids the drawbacks of the two counterexamples above that (i)

the noise does not make the outcome jump from one value to another like from 0 to 1,

and (ii) the noise smears the outcome around both positively and negatively, rather than

push the outcome in one direction. We do not know yet if these properties, appropriately

formalized, imply substitutability; we hope to address these issues in future work.

Up until this point, we have only considered canonical scoring rules. We now consider

non-canonical scoring rules. As Section 2.3 indicates, if the belief distribution is q, then

the mean-eliciting scoring rule is such that the expected score function is G(q) = f(E q)
for some convex function f . The canonical scoring rule corresponds to f(x) = x2 which

makes the conditionally independent normal signals substitutes. We will characterize

functions of the form f(t) = tλ. Since f is convex, f ′′(t) = λ(λ−1)tλ−2, so we need λ ≥ 1.

The next proposition claims that the signals are substitutes if and only if 1 ≤ λ ≤ 2.

Proposition 4.16. Let E ∼ N (0, σ2
E) and Ai|E ∼ N (E, σ2

i ), i = 1, . . . , n be condi-

tionally independent given E. Consider the mean-eliciting scoring rule such that the

expected score function is G(q) = f(E q) = (E q)λ for λ ≥ 1. Then, (A1, . . . , An;E) are

substitutes for every value of parameters σ2
E , σ

2
1, . . . , σ

2
n if and only if λ ≤ 2.

Proof. We use the fact that if Z ∼ N (0, σ2), then E |Z|p = cpσ
p for constant cp depend-

ing only on p. The inequality to show is EG(pSai) +EG(pSaj ) ≥ EG(pSaiaj ) +EG(pS).

If signals are substitutes for two signals, that is, for S = ∅, then, starting from a
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fixed S, E|(Ak)k∈S is normal, so applying the two-signal results with prior E|(Ak)k∈S
we get the inequality for a fixed S. Since this holds for every S, taking expectation

over S gives the substitutes inequality for S with ai and aj . Conversely, if the sig-

nals are substitutes then they must be substitutes for two signals. Thus it is neces-

sary and sufficient to deal with two signals, and by symmetry we can call these two

signals A1 and A2. We know from (4.8) that E|A1 is normal with mean
σ2
E

σ2
E+σ2

1
A1,

so EA1 G(pa1) = EA1(EE|A1)λ = EA1

(
σ2
E

σ2
E+σ2

1
A1

)λ
. Now, A1 ∼ N (0, σ2

E + σ2
1), so

σ2
E

σ2
E+σ2

1
A1 ∼ N

(
0,

σ4
E

σ2
E+σ2

1

)
. We conclude that EA1G(pa1) = cλ

(
σ4
E

σ2
E+σ2

1

)λ/2
. Similarly,

EA2G(pa2) = cλ

(
σ4
E

σ2
E+σ2

2

)λ/2
. We know from (4.8) that E|A1, A2 is normal with mean

σ2
Eσ

2
1A2+σ2

Eσ
2
2A1

σ2
Eσ

2
1+σ2

Eσ
2
2+σ2

1σ
2
2
. To find the distribution of this expression, write it as

σ2
Eσ

2
1(E + ε2) + σ2

Eσ
2
2(E + ε1)

σ2
Eσ

2
1 + σ2

Eσ
2
2 + σ2

1σ
2
2

=
σ2
E(σ2

1 + σ2
2)E + σ2

Eσ
2
2ε1 + σ2

Eσ
2
1ε2

σ2
Eσ

2
1 + σ2

Eσ
2
2 + σ2

1σ
2
2

which has mean 0 and variance

σ4
E(σ2

1 + σ2
2)2σ2

ε + σ4
Eσ

4
2σ

2
1 + σ4

Eσ
4
1σ

2
2

(σ2
Eσ

2
1 + σ2

Eσ
2
2 + σ2

1σ
2
2)2

=
σ4
E(σ2

1 + σ2
2)

σ2
Eσ

2
1 + σ2

Eσ
2
2 + σ2

1σ
2
2

Therefore,

E
A1A2

G(pa1a2) = cλ

(
σ4
E(σ2

1 + σ2
2)

σ2
Eσ

2
1 + σ2

Eσ
2
2 + σ2

1σ
2
2

)λ/2
Lastly, EG(p) = cλ(σ2

E)λ/2 Let θ = λ/2 and x = σ2
E , y = σ2

1, z = σ2
2, then it must be

true that for any x, y, z > 0,

(
x2

x+ y

)θ
+

(
x2

x+ z

)θ
≥
(

x2(y + z)

xy + xz + yz

)θ
or

1

(x+ y)θ
+

1

(x+ z)θ
≥
(

y + z

xy + xz + yz

)θ
Let y = z = 1 and x → 0, we get 2 ≥ 2θ or θ ≤ 1, or λ ≤ 2. Now we show that the

inequality holds for θ ≤ 1. After dividing both sides by (y + z)θ, this is equivalent to

1

(y2 + xy + xz + yz)θ
+

1

(z2 + xy + xz + yz)θ
≥ 1

(xy + xz + yz)θ
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Normalize xy + xz + yz to 1. We want to show that (y2 + 1)−θ + (z2 + 1)−θ ≥ 1. We

have yz ≤ xy + xz + yz = 1, so

(y2 + 1)−θ + (z2 + 1)−θ ≥
(

1

y2 + 1

)θ
+

(
y2

y2 + 1

)θ
To finish to proof, we have to show that for 0 < t < 1, h(t) := tθ + (1 − t)θ ≥ 1. We

calculate f ′(t) = θtθ−1

(
1−

(
t

1−t

)1−θ
)

, so f ′(t) ≥ 0 for 0 ≤ t ≤ 1
2 , and f ′(t) ≤ 0 for

1
2 ≤ t ≤ 1. Since f(0) = f(1) = 1, we are done.



Chapter 5

Discussion and Future Work

This work makes two main contributions. The first contribution in Chapter 3 is a

characterization of universal complements. The second contribution in Chapter 4 is an

investigation into designing the score function to make signals in a given information

structure become substitutes. We believe that the work in Chapter 4 is a start to a

fruitful research direction into structure and design of information substitutes. We list

a few such directions below.

5.1 Future Work: Informational Substitutes

5.1.1 Designing G with Oracle Query on Information Structure

In Section 4.2, we initiate the study of designing the convex expected score function G

for a given information structure. We assume that the entire information structure needs

to be fed into the algorithm. For tractability, we therefore assume throughout that the

information structure has a compact representation. This is not the only possible type

of data access.

Since the entire information structure is a big object, a more commonly used type of data

access is via an oracle query. The algorithm can ask for some data about the information

structure in a query; precisely how depends on the modeler. There are different ways

to design the oracle query, and each gives differing amounts of power to the query. We

want to see whether we can design a substitute-inducing G in a polynomial number of

queries, or show that it is not possible. The following queries are examples.

• Given a realization A1 = a1, . . . , An = an of signals and E = e of outcome, return

πe,a1,...,an := P(E = e|A1 = a1, . . . , An = an). This is the weakest possible query

51
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under the assumption that the information structure is perfectly known. This is

equivalent (up to a constant factor) of returning a distribution of E given A1 =

a1, . . . , An = an. Throughout Section 4.2, we only use this type of information

packaged in a compact form. We believe, but do not yet have a proof, that a

polynomial number of queries of this type is not sufficient to determine a G in the

general case, or even to check substitutability given a fixed G.

Some proof ideas might be gleaned from Hatfield et al. (2012). This work tests

substitutability in matching markets rather than prediction markets, but substi-

tutability in both markets have connections to submodular set functions. Analo-

gous to their work, we might be able to show that violation of substitutability can

be “local” in the sense that there are very few substitutability violations relative

to the number of subsets of signals.1

• Given a subset S ⊆ {1, 2, . . . , n} and a realization (Ai = ai)i∈S for a subset of sig-

nals, return a distribution of E given (Ai = ai)i∈S . This oracle query seems quite

reasonable, and most amenable to checking weak substitutability using Definition

2.15. Yet this query is quite powerful; it takes an exponential number of queries

of the first bullet point type to implement this query, summing over possible re-

alizations of signals outside of S. If, given access to this query, we still need a

super-polynomial number of queries, we will be much confident that the same is

true for any reasonable query on the information structure.

• For moderate and strong substitutes, we need an oracle that treats each signal Ai

not as a chunk but as a piece of information with internal structure. However,

this task seems intractable without further assumptions on the internal structure

of the signals.

Even a weaker version of this question is currently unsolved: given an information struc-

ture and a G, how can we check efficiently whether this G makes the signals substitutes.

A relaxation of this idea would be that we can find an easy-to-check (and hopefully intu-

itive and interesting) sufficient condition that implies substitutability. The information

monotonicity approach (Kong and Schoenebeck, 2018b) might be helpful. However, we

have yet to make progress in this direction. Moreover, if substitutability violation is

indeed “local,” then substitutability itself might be quite fragile, and it is unlikely that

another sufficient condition (which should be rather global because it is easy to check)

can imply it.

1We thank Alex Wei (private communication) for this observation.
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5.1.2 Designing G with Incomplete Data on Information Structure

In the previous subsection, we assume that the information structure is perfectly known,

only that we access it through an oracle. This assumption is unrealistic in most set-

tings, where we do not have a highly detailed knowledge about the information structure.

Rather, we know something, but not everything about the information structure. The

research question becomes: can we design a substitute-inducing G given this imperfect

information? The strongest notion is that the G induces substitutability for any infor-

mation structure that agrees with the part we know, while the part we do not know are

completed arbitrarily. We believe that there is at least a conceptual connection between

this framework and the nascent literature on robust optimization (see, e.g., Chen et al.

(2017)). A more relaxed notion might be that the designer has a prior distribution over

the unknown parts of the information structure, and we want G to induce substitutes

with high probability. It is probably advisable to first abstract away from computational

costs and focus on the geometric and information theoretic aspects of the problem. After

all, it is not even clear that designing such a G is possible.

5.1.3 Continuous Distributions and Distribution Properties

While we take the approach of designing G in Section 4.2, in Section 4.3 and 4.4 we focus

on G that has specific functional forms and the signals that are gaussian rather than

general. One reason is that such information structures are commonly used in economic

modeling modeling and thus we see it worthwhile to investigate them. However, another

reason is that in continuous regimes, standard techniques, such as linear programming,

no longer work. Standard ways to describe the signal distributions also no longer work.

We bypass this problem by focusing on gaussian distributed signals and outcome and

do analysis on parameters of the distribution. However, this approach lacks generalities

that we desire in a good theory. We believe this is a fundamental obstacle that needs to

be directly addressed.

5.2 Future Work: Market Games More Broadly

5.2.1 Equilibrium Computation in Prediction Market Games

There are separate works investigating equilibria of prediction market games under

different special cases, the results of which are unified under the “all-rush” and “all-

delay” results of informational substitutes and complements (Chen and Waggonner,

2016). However, signals in most information structures are neither fully substitutes nor
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complements, and the theory developed in this work does not apply. Nevertheless, it

might still be possible to use the informational substitutes idea by breaking signals into

the substitutes part and complements part. Intuitively, agents should rush to reveal

the substitutes part and delay the complements part until their last trades. However,

formal models of this phenomenon have not yet been developed. Somewhat orthogo-

nally, we want to develop a general algorithm that computes an equilibrium given any

general information structure and trade order. As a first step in this direction, Kong

and Schoenebeck (2018a) fully analyzes the equilibrium of the Alice Bob Alice (A-B-A)

game, which is the main building block of our notion of informational substitutes.

5.2.2 Informational Substitutes in General Bayesian Games

In this work, we consider informational substitutes in prediction market settings where

there are no interaction between agents within a round. In each round of the prediction

market game, only one agent is selected to interact with the market (either a set of

securities with fixed prices, or an automated market maker) which is deterministic. The

interactions between agents only occur between rounds, in which the behaviors of agents

in previous rounds affect the market condition of the agent in current round.

In many settings of interest, such as auctions and financial markets, several agents

act simultaneously in the same round and need to take strategic behaviors of other

agents into account. It is not yet clear how our notion of informational substitutes

can be modified in such settings, and there are some fundamental obstacles that do

not occur in our setting. For example, it is true in our setting that more information

is always better; this is not generally true in multi-player settings. In multi-player

settings, we need to consider both informational and strategic substitutes. Milgrom and

Weber (1982) propose a definition of informational substitutes in a one-period common-

value auctions, but their formulations are very different from ours. A new definition of

informational substitutes in the two-sided market of Kyle (1985) will also be interesting.

5.2.3 Prediction Markets with Non-Myopic Boundedly Rational Agents

Prediction Markets are often designed using (strictly) proper scoring rules, which only

guarantee that agents report the truth if they are myopic. On the other hand, as alluded

to in Subsection 5.2.1, previous results that go beyond myopic agents assume that agents

are fully rational. This assumption might be inappropriate if the games are long and

the trade orders not fully known. To the best of our knowledge, no theoretical work has

been done on analyzing prediction market games when agents follow behavioral rules

such as no-regret learning. Analyzing such games using standard techniques such as the
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Multiplicative Weights Update method (Arora et al., 2012) might be tractable and give

us insights into dynamics of prediction markets in realistic settings.



Appendix A

Full Proofs

A.1 Full Proofs from Chapter 2

A.1.1 Proof of Proposition 2.22

Proof. We will prove this theorem when p and q each take an arbitrary finite number of

values. The case where they take infinite amounts of values is achieved by the standard

ε− δ argument of passing to the limit.

Assume that there are n possible values that a distribution in the domain of G could

take, ai for 1 ≤ i ≤ n. q takes values ai with probability qi and p takes values ai with

probability pi, for each i. Then we have

G(p) = −Var(p) = −
∑
i

a2
i p

2
i +

(∑
i

aipi

)2

and similarly for q. The formula for Bregman divergence is

DG(p, q) = G(p)−G(q)− 〈G′(q), p− q〉
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We compute the inner product in the last term

〈G′(q), p− q〉 =
∑
i

(pi − qi)
∂

∂qi
G(q)

=
∑
i

(pi − qi)

[
−2a2

i qi + 2ai

(∑
k

akqk

)]

= −2
∑
i

a2
i qi(pi − qi) + 2

(∑
i

aiqi

)(∑
i

ai(pi − qi)

)

= −2
∑
i

a2
i piqi + 2

∑
i

a2
i q

2
i + 2

(∑
i

aipi

)(∑
i

aiqi

)
− 2

(∑
i

aiqi

)2

so

DG(p, q)

= −
∑
i

a2
i p

2
i +

(∑
i

aipi

)2

+
∑
i

a2
i q

2
i +

(∑
i

aiqi

)2

+ 2
∑
i

a2
i piqi − 2

∑
i

a2
i q

2
i

− 2

(∑
i

aipi

)(∑
i

aiqi

)

= −
∑
i

a2
i p

2
i +

(∑
i

aipi

)2

−
∑
i

a2
i q

2
i +

(∑
i

aiqi

)2

+ 2
∑
i

a2
i piqi − 2

(∑
i

aipi

)(∑
i

aiqi

)

= −

(∑
i

aipi

)2

−

(∑
i

aiqi

)2

+ 2

(∑
i

aipi

)(∑
i

aiqi

)

=

(∑
i

ai(pi − qi)

)2

−
∑
i

a2
i (pi − qi)2

= −Var(p− q)

A.2 Full Proofs from Chapter 3

A.2.1 Proof of Theorem 3.10

Proof. We first show this result for n = 2.

We show that E cannot take more than 2 values. Note that if we can prove this result

for binary signals A1, A2 then we can extend the result to signals that take multiple

values by letting all but two of the prior marginal probabilities go to zero, making such

signals arbitrarily approximate binary signals and invoke continuity of G. Assume for
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the sake of contradiction that E takes d ≥ 3 values. The arguments to the G are in the

(d−1)-simplex. Let G be such that the value of G at the boundary of the (d−1)-simplex

be 0, and the value of G at the prior be −1, so the graph of G looks like a pyramid. Any

conditional distribution pS for a nontrivial subset of signals S must live on the edge of

the simplex, since after conditioning on a variable, there is only one free variable left,

and that variable is binary, so it can take only 2 values, but the (d−1)-simplex has d > 2

arguments, so some of the arguments must be 0, and pS is on the edge of the simplex and

G(pS) = 0. The substitutes inequality G(p) + Ea1a2 G(pa1a2) ≥ Ea1 G(pa1) + EG(pa2)

therefore reduces to G(p) ≥ 0 which is false.

Now that in the case n = 2 we know that E is binary, we will next show that E is

A1 ⊕A2 or ¬(A1 ⊕A2).

For notational convenience list the value of E when (A1, A2) = (0, 0), (0, 1), (1, 0), (1, 1)

consecutively, for example, 0001 represents the setup where E = 1 if A1 = A2 = 1

and 0 otherwise. The following are allowed: 0110,1001,0011,1100,0101,1010,0000,1111

(counting those with trivial signals as well). These are all the combinations with 1s

appearing 0,2 or 4 times. We want to rule out the cases where 1s appear 1 or 3 times.

By symmetry (flipping every 0 to 1 and vice versa) it suffices to consider the case where

1s appear 1 time. Appropriate renaming of indices reduces us to 0001. Write πa1a2 as

the prior probability of (A1, A2) = (a1, a2), the complements inequality is

G(π11) ≥ (π10 + π11)G

(
π11

π10 + π11

)
+ (π01 + π11)G

(
π11

π01 + π11

)

Corollary 3.6 implies that this inequality is true for every convex G if and only if the

inequality 3.4 is true. The inequality reduces to π11 − 1 ≥ −π10 − π01 which is false

under the assumption π00 > 0.

We therefore have proved that for n = 2, E must be a XOR of signals (or its negation).

Now we will use this characterization for n = 2 to extend to all n.

We first show that if signals are nontrivial, every signal is binary. Assume for the sake

of contradiction that a signal, say A1, takes at least 3 values 0, 1, 2. Let E(a1, a2) be the

value of E with A1 = a1, A2 = a2 and A3, . . . , An take some fixed values. Consider the

case where A1 takes values in {0, 1} and A2 in {0, 1}. We can do this by considering an

information structure with probabilities of other values very small and invoke continuity

of G. By the n = 2 characterization, E on these values must be a XOR. Without loss

of generality, let E(0, 0) = E(1, 1) = 0 and E(0, 1) = E(1, 0) = 1. Now consider A1

in {0, 2} and A2 in {0, 1}. Since E(0, 0) = 0 and E(0, 1) = 1, the only possible XOR

continuation is E(2, 0) = 1 and E(2, 1) = 0. However, when we consider A1 in {1, 2}
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and A2 in {0, 1}, the values E(1, 0) = E(2, 0) = 1, E(1, 1) = E(2, 1) = 0 make A1 trivial,

a contradiction. Therefore, every signal is binary.

Now we show that E is a XOR of all n signals or its negation. We show this by

induction on n. The case n = 1 is evident and n = 2 is proven. Now assume that it

is true for n − 1. Then E conditional on A1 = 0 and A2, . . . , An is A2 ⊕ · · · ⊕ An or

¬(A2 ⊕ · · · ⊕ An). Similarly, E conditional on A1 = 1 and A2, . . . , An is A2 ⊕ · · · ⊕ An
or ¬(A2 ⊕ · · · ⊕ An). If both are the same, either A2 ⊕ · · · ⊕ An or ¬(A2 ⊕ · · · ⊕ An),

then A1 is trivial, which is not allowed. If E|A1 = 0, A2, . . . , An = A2 ⊕ · · · ⊕ An and

E|A1 = 1, A2, . . . , An = ¬(A2 ⊕ · · · ⊕ An), then E|A1, . . . , An = A1 ⊕ A2 ⊕ · · · ⊕ An. If

E|A1 = 0, A2, . . . , An = ¬(A2 ⊕ · · · ⊕ An) and E|A1 = 1, A2, . . . , An = (A2 ⊕ · · · ⊕ An),

then E|A1, . . . , An = ¬(A1 ⊕A2 ⊕ · · · ⊕An). The inductive hypothesis is proved, so we

show the first part of the theorem, that E must be the XOR of signals.

We now prove the second part of the theorem, that XOR of signals are universal com-

plements.

The case n = 1 is evident. We first prove the case n = 2. Pick any convex G and let all

probability distributions on E be represented as scalars q ∈ [0, 1], the probability that

E = 1. By Proposition 3.4, we can scale G such that G(0) = G(1) = 0. We must have

G(x) ≤ 0 for all 0 ≤ x ≤ 1. For every a1, a2 ∈ {0, 1}, let πa1a2 be the prior probability

that A1 = a1 and A2 = a2. We can compute

EG(pa1a2) = (π00 + π11)G(0) + (π01 + π10)G(1) = 0

EG(pa1) = (π00 + π01)G

(
π01

π00 + π01

)
+ (π10 + π11)G

(
π10

π10 + π11

)
EG(pa2) = (π00 + π10)G

(
π10

π00 + π10

)
+ (π01 + π11)G

(
π01

π01 + π11

)
EG(p) = G(π01 + π10)

Therefore, we want to show that for any convex G,

EG(pa1a2) + EG(p) ≥ EG(pa1) + EG(pa2)

G(π01 + π10) ≥ (π00 + π01)G

(
π01

π00 + π01

)
+ (π10 + π11)G

(
π10

π10 + π11

)
+ (π00 + π10)G

(
π10

π00 + π10

)
+ (π01 + π11)G

(
π01

π01 + π11

)
Note that if the denominator of a term is zero then the coefficient of that term is also

zero so the term vanishes.

This inequality is in the form of Corollary 3.6, so we only need to check the inequality

of the form (3.4) to finish the proof. We consider two cases.
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Case 1 π00π10 ≥ π01π11. Observe that (π10+π01)(π00+π01)−π01(π00+π01+π10+π11) =

π00π10 − π01π11 so π10 + π01 ≥ π01
π00+π01

Similarly, we can show that

π10

π10 + π01
≥ π10 + π01

π01

π01 + π11
≥ π10 + π01

π10 + π01 ≥
π01

π00 + π01

π10 + π01 ≥
π10

π00 + π10

The inequality to be proved reduces to

(π00 + π01)
π01

(π00 + π01)(π10 + π01)
+ (π10 + π11)

π11

(π10 + π11)(π00 + π11)

+ (π00 + π10)
π10

(π00 + π10)(π10 + π01)
+ (π01 + π11)

π11

(π01 + π11)(π00 + π11)

= 1 +
2π11

π00 + π11
≥ 1

which is immediate.

Case 2 π00π10 ≤ π01π11. Similarly, we can show that

π10

π10 + π01
≤ π10 + π01

π01

π01 + π11
≤ π10 + π01

π10 + π01 ≤
π01

π00 + π01

π10 + π01 ≤
π10

π00 + π10

and the proof goes down as in Case 1. So the proof for n = 2 case is finished.

Now we prove by induction on n that the statement is true for all n. We have proved

the base step n = 1, 2. Now assume that it is true for up to n and we will show it for

n+ 1. We want to show that in the [n+ 1] universe and S′ ⊆ S, T ⊂ [n+ 1] \ S,

EG(pai:i∈S∪T )− EG(pai:i∈S) ≥ EG(pai:i∈S′∪T )− EG(pai:i∈S′)

We can check that |S|, |S′|, |T | ≤ n, so the required inequality follows by inductive

hypothesis, with ⊕i∈S′ai prior, and the fact that ⊕i∈S\S′Ai and ⊕i∈TAi are universal

weak complements, by n = 2 result. We are done.
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A.2.2 Proof of Theorem 3.14

Proof. We first prove the case n = 2 and f is boolean. Write πa1a2 the prior probability

that (A1, A2) = (a1, a2) and aa1a2 := f(A1 = a1, A2 = a2). Consider the following

partition

A′ = {{(0, 0), (0, 1), (1, 0), (1, 1)}}

A = {{(0, 0)}, {(0, 1), (1, 0), (1, 1)}}

B = {{(0, 1)}, {(0, 0), (1, 0), (1, 1)}}

What this means is that A′ is a null signal; A tells you whether (a1, a2) is in {(0, 0)}
or {(0, 1), (1, 0), (1, 1)} with prior probabilities π00 and π01 + π10 + π11 respectively, and

similarly for B. We then have

B ∨A′ = B

B ∨A = {{(0, 0)}, {(0, 1)}, {(1, 0), (1, 1)}}

and

EG(pba) = π00G(a00) + π01G(a01) + (π10 + π11)G

(
π10a10 + π11a11

π10 + π11

)
EG(pa) = π00G(a00) + (π01 + π10 + π11)G

(
π01a01 + π10a10 + π11a11

π01 + π10 + π11

)
EG(pba′) = π01G(a01) + (π00 + π10 + π11)G

(
π00a00 + π10a10 + π11a11

π00 + π10 + π11

)
EG(pa′) = G(π00a00 + π01a01 + π10a10 + π11a11)

We also see that A′ = A ∧ B � A′ � A. If (A1, A2;E) are moderate complements then

we must have

EG(pba)− EG(pa) ≥ EG(pba′)− EG(pa′)

Substituting the expressions above and simplifying gives

(π10 + π11)G

(
π10a10 + π11a11

π10 + π11

)
+G(π00a00 + π01a01 + π10a10 + π11a11) ≥

(π00 + π10 + π11)G

(
π00a00 + π10a10 + π11a11

π00 + π10 + π11

)
+ (π01 + π10 + π11)G

(
π01a01 + π10a10 + π11a11

π01 + π10 + π11

)
Each function f corresponds to one of the 16 possible values of (a00, a01, a10, a11). For

notational convenience list the value of E when (A1, A2) = (0, 0), (0, 1), (1, 0), (1, 1)
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consecutively; for example, 0001 represents the information structure where E = 1 if

A1 = A2 = 1 and 0 otherwise.

We will show that 0100, 0101, 0110, 0111 are not permissible by choosing an appropriate

counterexample G that violates the inequality. We will assume throughout that G(0) =

G(1) = 0.

0100

G(π01) ≥ π00G(0) + (π01 + π10 + π11)G

(
π01

π01 + π10 + π11

)
This is false for any strictly convex G: Jensen’s inequality in the wrong sign.

0101

(π10 + π11)G

(
π11

π10 + π11

)
+G(π01 + π11) ≥

(π00 + π10 + π11)G

(
π11

π00 + π10 + π11

)
+ (π01 + π10 + π11)G

(
π01 + π11

π01 + π10 + π11

)
We can check that π11

π00+π10+π11
< π01+π11

π01+π10+π11
, so the two elements in G of the right hand

side are not equal. So we can choose G such that the two G terms in the left hand

side are equal G
(

π11
π10+π11

)
= G(π01 + π11) (such a convex G with that property always

exists). Then with strictly convex G we can say that some linear combination of two Gs

on the right hand side are strictly greater than the first G on the left hand side (we get

strictly greater because the two things inside G of the right hand side are not equal - this

is important), and also some other linear combination of the two Gs on the right hand

side are greater than the second G, and if we combine the two inequalities appropriately

we can get that the right hand side is greater than some linear combination of the two

Gs on the left hand side - they probably have different coefficients but everything we do

here is normalized so the sum of the coefficients are the same and since we assume the

two Gs have equal value, we get that the right hand side is greater than the left hand

side. We can also do the calculation explicitly. We have

αG

(
π11

π00 + π10 + π11

)
+ βG

(
π01 + π11

π01 + π10 + π11

)
> G

(
π11

π10 + π11

)
γG

(
π11

π00 + π10 + π11

)
+ δG

(
π01 + π11

π01 + π10 + π11

)
> G(π01 + π11)

with α+ β = 1, γ + δ = 1 given by

α =
π01π10(π00 + π10 + π11)

(π10 + π11)(π00π01 + π01π10 + π00π11)
, β =

π00π11(π01 + π10 + π11)

(π10 + π11)(π00π01 + π01π10 + π00π11)

γ =
π00(π01 + π11)(π00 + π10 + π11)

π00π01 + π01π10 + π00π11
, δ = 1− γ =

π01(π10 + π00π01 + π00π11)

π00π01 + π01π10 + π00π11
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Now we multiply the first inequality by λ, the second by µ, then add, such that λ and

µ satisfy

αλ+ γµ =
(π00 + π10 + π11)

(π00 + π10 + π11) + (π01 + π10 + π11)
, λ+ µ = 1

then rearrange to get what we want.

0101

(π10 + π11)G

(
π10

π10 + π11

)
+G(π01 + π10) ≥

(π00 + π10 + π11)G

(
π10

π00 + π10 + π11

)
+ (π01 + π10 + π11)G

(
π01 + π10

π01 + π10 + π11

)
We can check that π10

π00+π10+π11
< π01+π10

π01+π10+π11
. The rest proceeds exactly the same as

the previous case.

0111

G(π01 + π10 + π11) ≥ (π00 + π10 + π11)G

(
π10 + π11

π00 + π10 + π11

)
+ π01G(1)

This is just Jensen with the wrong sign, same argument as 0100.

So we show that 0100, 0101, 0110, 0111 are not permissible. By symmetry, or analo-

gously, we can also show (with A′ null, A separates (0, 0) from the rest, and B separates

(1, 0) from the rest) that 0010, 0011, 0110, 0111 are not permissible, so among the 8

combinations that start with 0, we are left only with 0000 and 0001. We will also show

that 0001 is not permissible with the following signals: A′ null, A separates (1, 1) from

the rest, and B separates (1, 0) from the rest, and G(0) = G(1) = 1 we get

G(π11) ≥ (π11 + π01 + π00)G

(
π11

π11 + π01 + π00

)
with π11 <

π11
π11+π01+π00

this is the convex G inequality with the wrong sign.

Therefore, we show that for a sequence starting with 0, only 0000 is admissible. By

symmetry, or analogously, for a sequence starting with 1, only 1111 is admissible. So we

proved that in the case n = 2, f has to be a constant function.

Extending the case n = 2 to general n, f boolean, is straightforward. Assume that it is

true up to n − 1, then a function f(A1, . . . , An) of n variables must be constant when

you fix the An, so f(A1, . . . , An) depends only on An, but similarly it depends only on

An−1 so it depends on neither, that is, a constant function.
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Now we extend this to E = f(A1, . . . , An) a general function. E takes a finite number of

values because there are finitely many possible inputs A1, . . . , An. If E takes 2k values,

then we can write E = (E1, . . . , Ek). We must have Ej = fj(A1, . . . , An) a deterministic

function of Ai, and (A1, . . . , An;Ej) are universal complements, so Ej is a constant for

all j, so E is a constant.

We can further extend this result to signals Ai that take multiple finite number of values.

We can replace any Ai with Ai1, . . . , Aiti with Aij binary, say, map any possible value

of Ai into binary numbers from 0 up to a finite number less than 2ti , then Aij is the jth

digit of the binary representation of Ai. We are done.

A.3 Full Proofs from Chapter 4

A.3.1 Proof of Proposition 4.14

Proof. 1. We compute

E
A0

Var(E|A0) = E
A1

Var(E|A1) =
πE(1− πE)(1− π)π

(1− π)πE + π(1− πE)
+

πE(1− πE)(1− π)π

ππE + (1− π)(1− πE)

P(E = 1|A0 = 1, A1 = 1) =
πE(1− π)2

πE(1− π)2 + (1− πE)π2

P(E = 1|A0 = 1, A1 = 0) = P(E = 1|A0 = 0, A1 = 1) =
πE(1− π)π

πE(1− π)π + (1− πE)(1− π)π
= πE

P(E = 1|A0 = 0, A1 = 0) =
πEπ

2

πEπ2 + (1− πE)(1− π)2

so

E
A0,A1

Var(E|A0, A1) = πE(1− πE)(1− π)2π2

(
1

(1− π)2πE + π2(1− πE)
+

1

πEπ2 + (1− πE)(1− π)2

)
+ 2πE(1− πE)(1− π)π

The inequality reduces to

1 + 2π(1− π) + (1− π)2π2

(
1

(1− π)2πE + π2(1− πE)
+

1

πEπ2 + (1− πE)(1− π)2

)
≥

2π(1− π)

(
1

(1− π)πE + π(1− πE)
+

1

πEπ + (1− πE)(1− π)

)
A counterexample is (πE , π) = (0.99, 0.49)

2. We use the following notation π̄ = 1− π for π ∈ {πE , π1, π2}.
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We want to show that the following inequality has a counterexample

Var(E) + E
A1,A2

Var(E|A1, A2) ≥ E
A1

Var(E|A1) + E
A2

Var(E|A2)

First, Var(E) = πE π̄E . Now, both A1 and A2 take value in {0, 1, 2} but if either

of them takes value 0 or 2 we know the value E for certain (if one of them takes

value 0, then E = 0, and if one of them takes value 2, then E = 1). The only

variability in E given A1 and A2 comes when A1 = A2 = 1, so

E
A1,A2

Var(E|A1, A2) = P(A1 = 1, A2 = 1)Var(E|A1 = 1, A2 = 1)

= P(A1 = 1, A2 = 1)P(E = 1|A1 = 1, A2 = 1)(1− P(E = 1|A1 = 1, A2 = 1))

Now, P(A1 = 1, A2 = 1) = πE π̄1π̄2 + π̄Eπ1π2 and P(E = 1|A1 = 1, A2 = 1) =

π̄Eπ1π2/P(A1 = 1, A2 = 1) so

E
A1,A2

Var(E|A1, A2) =
πE π̄1π̄2 · π̄Eπ1π2

πE π̄1π̄2 + π̄Eπ1π2

Similarly,

E
A1

Var(E|A1) = P(A1 = 1)Var(E|A1 = 1)

= (πE π̄1 + π̄Eπ1)
πE π̄1

πE π̄1 + π̄Eπ1

π̄Eπ1

πE π̄1 + π̄Eπ1

=
πE π̄1 · π̄Eπ1

πE π̄1 + π̄Eπ1

E
A2

Var(E|A2) =
πE π̄2 · π̄Eπ2

πE π̄2 + π̄Eπ2

The inequality reduces to

1 +
π1π2π̄1π̄2

πE π̄1π̄2 + π̄Eπ1π2
≥ π1π̄1

πE π̄1 + π̄Eπ1
+

π2π̄2

πE π̄2 + π̄Eπ2

A counterexample to this is (πE , π1, π2) = (0.95, 0.8, 0.8).
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